Quantum Foundations

This series consists of talks in the area of Foundations of Quantum Theory. Seminar and group meetings will alternate.

Seminar Series Events/Videos

Currently there are no upcoming talks in this series.


Tuesday Mar 12, 2013

Crudely formulated, the idea of neorealism, in the way that
Chris Isham and Andreas Doering use it, means that each theory of
physics, in its mathematical formulation should share certain structural
properties of classical physics. These properties are chosen to allow some degree of
realism in the interpretation (for example, physical variables always have values).
Apart from restricting the form of physical theories, neorealism does
increase freedom in the shape of physical theories in another

Scientific Areas: 


Tuesday Feb 26, 2013
Scientific Areas: 


Tuesday Feb 05, 2013

The general boundary formulation (GBF) is an atemporal, but spacetime local formulation of quantum theory. Usually it is presented in terms of the amplitude formalism, which, in the presence of a background time, recovers the pure state formalism of the standard formulation of quantum theory. After reviewing the essentials of the amplitude formalism I will introduce a new "positive formalism", which recovers instead a mixed state formalism.

Scientific Areas: 


Tuesday Dec 11, 2012

Quantum chaos is the study
of quantum systems whose classical description is chaotic.

Scientific Areas: 


Tuesday Nov 20, 2012

a generic quantum experiment we have a given set of devices analyzing some
physical property of a system. To each device involved in the experiment we
associate a set of random outcomes corresponding to the possible values of the
variable analyzed by the device. Devices have apertures that permit physical
systems to pass through them. Each aperture is labelled as "input" or
"output" depending on whether it is assumed that the aperture lets
the system go inside or outside the device. Assuming a particular input/output

Scientific Areas: 


Tuesday Nov 13, 2012

Negativity in a quasi-probability representation is typically
interpreted as an indication of nonclassical behavior. 

However, this does not preclude bases that are non-negative from
having interesting applications---the single-qubit

stabilizer states have non-negative Wigner functions and yet
play a fundamental role in many quantum information tasks.

We determine what other sets of quantum states and measurements
of a qubit can be non-negative in a quasiprobability



Tuesday Nov 06, 2012

If probabilities represent knowledge, what is an "unknown

probability"? De Finetti's theorem licenses the view that it is simply a

convenient metaphor for a certain class of knowledge about a series of

events. There are quantum versions for "unknown states" and

channels". I will explain how "unknown measurements" can be


I will then move to a totally different topic. The Bloch sphere is handy



Thursday Nov 01, 2012

The fact that the quantum wavefunction of a many-particle system is a function on a high-dimensional configuration space, rather than on spacetime, has led some to suggest that any realist understanding of quantum mechanics must regard configuration space as more fundamental than spacetime. Worse, it seems that a wavefunction monist ontology cannot help itself to talk of "configuration space" at all, without particles for the configurations to be configurations of.