This series consists of talks in the area of Foundations of Quantum Theory. Seminar and group meetings will alternate.
Classical constraints come in various forms: first and second class, irreducible and reducible, regular and irregular, all of which will be illustrated. They can lead to severe complications when classical constraints are quantized. An additional complication involves whether one should quantize first and reduce second or vice versa, which may conflict with the axiom that canonical quantization requires Cartesian coordinates.
A family of probability distributions (i.e. a statistical model) is said to be sufficient for another, if there exists a transition matrix transforming the probability distributions in the former to the probability distributions in the latter. The so-called Blackwell-Sherman-Stein Theorem provides necessary and sufficient conditions for one statistical model to be sufficient for another, by comparing their "information values" in a game-theoretical framework. In this talk, I will extend some of these ideas to the quantum case.
Wheeler's delayed choice (WDC) is one of the "standard experiments in foundations". It aims at the puzzle of a photon simultaneously behaving as wave and particle. Bohr-Einstein debate on wave-particle duality prompted the introduction of Bohr's principle of complementarity, ---`.. the study of complementary phenomena demands mutually exclusive experimental arrangements" . In WDC experiment the mutually exclusive setups correspond to the presence or absence of a second beamsplitter in a Mach-Zehnder interferometer (MZI).
This is a very informal talk about some of the issues associated with the notion of "macroscopic realism" (MR) and its relation to quantum mechanics (QM).
This is a geometric tutorial about straight and twisted vectors and forms (ie, de Rham currents) leading to some wild thoughts about the EM field as a *thing*, ie with properties similar to a piece of matter; and to some even wilder thoughts about a metric-free GR.
I provide a reformulation of finite dimensional quantum theory in the circuit framework in terms of mathematical axioms, and a reconstruction of quantum theory from operational postulates. The mathematical axioms for quantum theory are the following: [Axiom 1] Operations correspond to operators. [Axiom 2] Every complete set of positive operators corresponds to a complete set of operations. The following operational postulates are shown to be equivalent to these mathematical axioms: [P1] Definiteness.
Quantum theory can be thought of a noncommutative generalization of classical probability and, from this perspective, it is puzzling that no quantum generalization of conditional probability is in widespread use. In this talk, I discuss one such generalization and show how it can unify the description of ensemble preparations of quantum states, POVM measurements and the description of correlations between quantum systems.
We will analyze different aspects of locality in causal operational probabilistic theories. We will first discuss the notion of local state and local objective information in operational probabilistic theories, and define an operational notion of discord that coincides with quantum discord in the case of quantum theory. Using such notion, we will show that the only theory in which all separable states have null discord is the classical one. We will then analyze locality of transformations, reviewing some general properties of no-signaling channels in causal theories.
A new ensemble interpretation of quantum mechanics is proposed according to which the ensemble associated to a quantum state really exists: it is the ensemble of all the systems in the same quantum state in the universe. Individual systems within the ensemble have microscopic states, described by beables. The probabilities of quantum theory turn out to be just ordinary relative frequencies probabilities in these ensembles.