This series consists of talks in the areas of Particle Physics, High Energy Physics & Quantum Field Theory.
We use black holes to understand some basic properties of theories of quantum gravity. First, we apply ideas from black hole physics to the physics of accelerated observers to show that the equations of motion of generalized theories of gravity are equivalent to the thermodynamic relation $\delta Q = T \delta S$. Our proof relies on extending previous arguments by using a more general definition of the Noether charge entropy. We have thus completed the implementation of Jacobson's proposal to express Einstein's equations as a thermodynamic equation of state.
The screening of electric charge in plasma with Bose condensate of a charged scalar field is calculated. In all previous calculations before 2009 the effects of Bose condensation have not been considered. Due to the condensate the time-time component of the photon polarization tensor in addition to the usual terms k-squared and Debye mass squared, contains infrared singular terms inversely proportional to k and k-squared. Such terms lead to power law oscillation behaviour of the screened potential, which is different form Friedel oscillations known for fermions.
The relic neutrino background contains a gapless, spin-2 sound mode, as well as a spin-1 mode if there is a neutrino-antineutrino asymmetry. The self-coupling of the spin-2 mode is given by Z boson exchange in the Standard Model and is parametrically similar to Newton's constant given the expected density of relic neutrinos. I will describe this emergent gravity theory and also describe how emergent theories avoid the Weinberg-Witten theorem, when the constituent degrees of freedom live in a flat Lorentz invariant space.
The particle physics community is bubbling with excitement since the recent discovery in the cosmic radiation of a positron and electron excess at high energy. This may be the first indirect hint that dark matter particles wander in the halo of the Milky Way. However, these species do not seem to have the expected properties. I will review the various pieces of that puzzle and present a status report of the current developments in that fast moving field.
It is well known that new physics at the electroweak scale could solve important puzzles in cosmology, such as the nature of dark matter and the origin of the cosmic baryon asymmetry. In this talk, I discuss some of the simplest, non-supersymmetric possibilities, their collider signatures, and the prospects for their discovery and identification at the LHC.
In this talk I describe the progress that we have made in the constuction of string vacua with many of the features of the minimal supersymmetric standard model (MSSM).
s-channel resonances are predicted by many models of Physics Beyond the Standard Model and it is quite possible that such an object will be discovered in the early years of the LHC program. If this occurs, the task will be to understand its origins. A brief survey of models that predict s-channel resonances will be given, concentrating mainly on extra neutral gauge bosons (Z' 's) arising from extended gauge theories. This will be followed by a description of how to search for a Z' and the resulting Z' discovery reach of the LHC.
I will revisit the phenomenology of the radion graviscalar in warped extra dimensions. This particle could be the lightest 'new physics' state to be discovered at the LHC in this type of models. Its phenomenology is very similar to the Standard Model (SM) Higgs, another potentially light scalar particle with which it could actually mix. When SM fields are moved from the boundary to the bulk of the extra dimension, new interesting effects appear in the scalar sector of the model.
The ATLAS experiment at the Large Hadron Collider (LHC) at CERN is completing final preparations for first high energy collisions in 2009. This talk will cover: the physics motivation of the LHC, highlights of the ATLAS experiment, commissioning, and prospects for new physics discoveries ahead.
An electroweak model in which the masses of the W and Z bosons and the fermions are generated by quantum loop graphs through a symmetry breaking of the vacuum is investigated. The model is based on a regularized quantum field theory in which the quantum loop graphs are finite to all orders of perturbation theory and the massless theory is gauge invariant, Poincaré invariant, and unitary to all orders. The breaking of the electroweak symmetry SUL(2) × UY (1) is achieved without a Higgs particle.