Cosmology & Gravitation

This series consists of talks in the areas of Cosmology, Gravitation and Particle Physics.

Seminar Series Events/Videos

Currently there are no upcoming talks in this series.
 

 

Wednesday Oct 24, 2018
Speaker(s): 

Hyper Suprime-Cam (HSC) is an imaging camera mounted at the Prime Focus of the Subaru 8.2-m telescope operated by the National Astronomical Observatory of Japan on the summit of Maunakea in Hawaii. A consortium of astronomers from Japan, Taiwan and Princeton University is carrying out a three-layer, 300-night, multiband survey from 2014-2019 with this instrument. In this talk, I will focus on the HSC survey Wide Layer, which will cover 1400 square degrees in five broad bands (grizy), to a 5 sigma point-source depth of r~26.

Collection/Series: 
Scientific Areas: 
 

 

Thursday Oct 18, 2018
Speaker(s): 

In the second lecture, I will extend the previous discussion to gravity, and show that the conformal trace anomaly must play a special role in the effective field theory of low energy gravity.

Collection/Series: 
Scientific Areas: 
 

 

Wednesday Oct 17, 2018
Speaker(s): 

In this first of two lectures, intended to be a pedagogical introduction, I will review the quantum field theory origin of anomalies starting with the more familiar example of the axial anomaly in QED, emphasizing the infrared effects and the appearance of a two-particle massless state, similar to a Cooper pairing in superconductor, associated with both the axial and conformal anomalies in two and four dimensions.

Collection/Series: 
 

 

Tuesday Oct 16, 2018
Speaker(s): 

A key prediction of the Lambda CDM framework of structure formation is that a host halo containing a Milky Way sized disk galaxy should contain hundreds of thousands of sub-dwarf galaxy mass dark matter subhalos. Devoid of stars, these substructures remain undetected. Detecting them will not only corroborate the existence of dark matter but also give crucial information on the particle nature of dark matter and how they cluster at small scale. Cold stellar streams originate when globular clusters are tidally disrupted in the Milky Way potential.

Collection/Series: 
Scientific Areas: 
 

 

Tuesday Oct 09, 2018
Speaker(s): 

Line Intensity Mapping has emerged as a powerful tool to probe the large-scale structure across redshift, with the potential to shed light on dark energy at low redshift and the cosmic dawn and reionization process at high redshift.  Multiple spectral lines, including the redshifted 21cm, CO, [CII], H-alpha, and Lyman-alpha emissions, are promising tracers in the intensity mapping regime, with several experiments on-going or in the planning.  I will discuss results from current pilot programs, prospects for the upcoming TIME experiment, and the outlook of future space missions such as SPHER

Collection/Series: 
Scientific Areas: 
 

 

Tuesday Sep 25, 2018
Speaker(s): 

Stars orbiting in the halo of our galaxy, the Milky Way, are a window into the distribution of dark matter. In particular, tidally disrupted star clusters, which produce thin stellar streams, are optimal tracers of matter. Based on a Fisher-information calculation, we expect that the current data on the known Milky Way streams should constrain the radial profile and the shape of the inner halo to a precision of a few percent. In addition, stellar streams retain a detailed record of the matter field on small scales.

Collection/Series: 
Scientific Areas: 
 

 

Tuesday Sep 18, 2018
Speaker(s): 

In galaxy redshift surveys, the line-of-sight velocity information is encoded in the observed redshift as a Doppler component that radially distorts the galaxy positions. The linear component of such `Redshift-Space Distortions' (RSD) is directly proportional to the growth rate of structure, f(z), and motivates the interest in RSD as a powerful way to constrain gravity. However, the non-linear evolution of the density and velocity fields requires the use of sophisticated theoretical models to extract reliable cosmological information from quasi-linear scales.

Collection/Series: 
Scientific Areas: 
 

 

Monday Sep 10, 2018
Speaker(s): 

Gravitational lensing has long served as a unique probe of the growth of structure, which is sensitive on large scales to the properties of dark energy and gravity.  In particular, lensing is instrumental in forming the statistic E_G, which is constructed to measure the growth rate of structure in a way independent of galaxy clustering bias.  Me

Collection/Series: 
Scientific Areas: 
 

 

Tuesday Sep 04, 2018
Speaker(s): 

 One of the most important discoveries of the 20th century has been the finding of neutrino oscillations. That phenomena implies that neutrinos are massive and shows the existence of physics beyond the standard model. Fundamental questions associated to this discovery are: what are the absolute neutrino masses? and what is their hierarchy? In this talk I will discuss how to use cosmological observables to answer these questions. I will first show one of the predictions of the Big Bang theory: the existence of a cosmic neutrino background.

Collection/Series: 
Scientific Areas: 
 

 

Thursday Jul 05, 2018
Speaker(s): 

I will first outline an effective field theory for cosmology (EFTC) that is based on the Standard Model coupled to General Relativity and improved with Weyl symmetry. Any version of quantum gravity (QG), including string theory, must include the same improvement, otherwise QG will not be geodesically complete.

Collection/Series: 
Scientific Areas: 

Pages