This series consists of talks in the areas of Cosmology, Gravitation and Particle Physics.
Gravitational lensing of the cosmic microwave background is emerging as a useful cosmological tool. Recent measurements have been made by several experiments (including the South Pole Telescope, which will be featured), with rapidly improving precision. These measurements can be used for many purposes, including studying the connection between dark matter and galaxies on large scales, measuring the clustering of matter at z~3, and improving the precision of possible measurements of gravitational radiation from inflation.
The simplest flux compactifications are highly symmetric—a q-form flux is wrapped uniformly around an extra-dimensional q-sphere. I will discuss a family of solutions that break the internal SO(q+1) symmetry of these solutions down to SO(q)×Z_2, and show that often at least one of them has lower vacuum energy, larger entropy, and is more stable than the symmetric solution. I will describe the phase diagram of lumpy solutions and provide an interpretation in terms of an effective potential.
The Effective Filed Theory of Large Scale Structures provides a novel framework to analytically compute the clustering of the Large Scale Structures in the weakly non-linear regime in a consistent and reliable way. The theory that describes the long wavelength fluctuations is obtained after integrating out the short distance modes and adding suitable operators that allow to correctly reconstruct the effect of short distance fluctuations at long distances. A few observables have been computed so far, and the results are extremely promising.
By now, both black hole astrophysics and big bang cosmology are empirically well-established disciplines of physics and astronomy. They are also the only circumstances in nature where Einstein's general relativity can be seen in its full glory, and yet contain within them, its eventual and inevitable folly. Here, I will outline subtle lines evidence for why a phenomenologically successful description of big bang cosmology and black hole horizons may be intimately connected.
I will discuss the evolution of a quantum scalar field in a toy universe which has three stages of evolution, viz., (i) an early (inflationary) de Sitter phase (ii) radiation-dominated phase and (iii) late-time (cosmological constant dominated) de Sitter phase. Using the Schr\"odinger picture, the scalar field equations are solved separately for the three stages and matched at the transition points. The boundary conditions are chosen so that field modes in the early de Sitter phase evolve from the Bunch-Davies vacuum state.
Peculiar velocities - deviations from Hubble expansion - are the only practical probe of the growth of matter density fluctuations on very large scales in the nearby Universe. I will discuss recent measurements of quantities of cosmological interest from our group and others. One is the "bulk" flow of nearby galaxies with respect to the frame defined by the Cosmic Microwave Background, and what this tells us about fluctuations on large very spatial scales.
There need not be any conflict between unitarity, locality, and regularity of the horizon in black hole evaporation. I discuss a scenario in which the initial collapse that forms the black hole results in a small non-singular core inside an inner event horizon. This core grows as the result of quantum back-reaction associated with the increasing entanglement entropy of Hawking radiation quanta and their partners trapped inside the core.
The talk is based on joint work with Yuri Manin (arXiv:1402.2158). Using algebro-geometric blowups it is possible to construct a family of models of gluing of aeons across a Big-Bang type singularity, which includes the case of Penrose's conformally cyclic cosmology, as well as inflationary multiverse models generalizing the "eternal symmetree", and BKLL mixmaster type cosmologies. Using the mixmaster dynamics, formulated in terms of elliptic curves and modular curves, we speculate on the geometry of cosmological time near the gluing of aeons.
Accreting supermassive black holes in the centres of galaxies (i.e. Active Galactic Nuclei - AGN) are now known to play a prominent role in the growth of galaxies through cosmic time. The fundamental parameters to explain the whole range of observed properties of these accreting systems, however, is still elusive. We will present some results from multi-wavelength investigations of the nature of accreting supermassive black holes, including those that produce low kinetic power jets as well as high kinetic power, relativistic jets.
I will try to explain how cosmological coincidence of the two values, the matter energy density and the dark energy density, at the present epoch based on a single scalar field model whith a quartic potential, non-mimimally interacting with gravity. Dark energy in this model originates from the potential energy of the scalar field, which is sourced by the appearance of non-relativistic matter at the time z~ 10^10. No fine tuning of parameter are neccessary.