This series consists of talks in the areas of Cosmology, Gravitation and Particle Physics.
TBA
We report on a new class of fast-roll inflationary models. In a part of its parameter space, inflationary perturbations exhibit quite unusual phenomena such as scalar and tensor modes freezing out at widely different times, as well as scalar modes reentering the horizon during inflation. One specific point in parameter space is characterized by extraordinary behavior of the scalar perturbations. Freeze-out of
Primordial non-Gaussianity has been traditionaly constrained using three-point function of the cosmic microwave background. Two years ago, however, Dalal et al have shown that non-Gaussianity of the local type induces a scale dependent bias for biased tracers of the underlying dark matter structure. This allows constraining of the primordial non-Gaussianity from measurements of large-scale structure provided by redshift surveys. I will discuss the technique, its theoretical aspects,
Cosmo Seminar
The quest to understand the nature of dark matter is entering a remarkable data-rich era. Hypothetical stable, electrically neutral particles with TeV-scale mass and weak-strength couplings are a simple, theoretically appealing, but untested candidate for the dark matter. I will summarize recent results in both direct and indirect searches for dark matter, and highlight what upcoming data may teach us.
The LHC will explore fundamental physics at a new energy frontier. A spectrum of new particles at the TeV scale is expected on two theoretical grounds: explaining dark matter and generating the electroweak scale. Understanding the properties of such particles can clarify the nature of dark matter, the origin of the weak scale, symmetries of nature, and the multiverse. These particles can be discovered by identifying collision events characteristic of new physics in LHC data.
The radio-metric tracking data received from the Pioneer 10 and 11 spacecraft from the distances between 20--70 astronomical units from the Sun has consistently indicated the presence of a small, anomalous, blue-shifted Doppler frequency drift that limited the accuracy of the orbit reconstruction for these vehicles. This drift was interpreted as a sunward acceleration of aP = (8.74 1.33) 1010 m/s2 for each particular spacecraft. This signal has become known as the Pioneer anomaly; the nature of this anomaly is currently being investigated.
While the properties of gravity, and its consistency with General Relativity (GR), are well tested on solar system scales, within our system and the decay of binary pulsar orbits, they are, by comparison, poorly tested on cosmic scales. This is of particular interest as we try to understand the origins of cosmic acceleration, and whether they are a signature of deviations from GR.
Standard inflationary theory predicts that primordial fluctuations in the
The simplest gravity duals for quantum critical theories with 'Lifshitz' scale invariance admit a marginally relevant deformation. We will explore the holographic renormalization of such theories, including this deformation. Additionally we explore how this holographic renormalization illuminates the physics of black holes in the qunatum critical regime.