A A   
Connect with us:      

Condensed Matter

This series consists of talks in the area of Condensed Matter.

Seminar Series Events/Videos

Speaker(s):
Scientific Areas:
TBA
Oct 2 2017 - 1:00pm
Room #: 405
Speaker(s):
Scientific Areas:
TBA
Oct 4 2017 - 11:00am
Room #: 405
Speaker(s):
Scientific Areas:
Nov 21 2017 - 3:30pm
Room #: 301
Speaker(s):
Scientific Areas:
 

 

Tuesday Sep 19, 2017
Speaker(s): 

Branch point twist fields play an important role in the study of measures of entanglement such as the Rényi entropies and the Negativity. In 1+1 dimensions such measures can be written in terms of multi-point functions of branch point twist fields. For 1+1-dimensional integrable quantum field theories and also in conformal field theory much is known about how to compute correlation functions and, with the help of the twist field, this knowledge can be exploited in order to gain new insights into the properties of various entanglement measures.

Collection/Series: 
Scientific Areas: 

 

Friday Sep 15, 2017

Dataset augmentation, the practice of applying a wide array of domain-specific transformations to synthetically expand a training set, is a standard tool in supervised learning. While effective in tasks such as visual recognition, the set of transformations must be carefully designed, implemented, and tested for every new domain, limiting its re-use and generality. In this talk, I will describe recent methods that transform data not in input space, but in a feature space found by unsupervised learning.

Collection/Series: 
Scientific Areas: 

 

Tuesday Sep 12, 2017
Speaker(s): 

The hydrodynamic approximation is an extremely powerful tool to describe the behavior of many-body systems such as gases. At the Euler scale (that is, when variations of densities and currents occur only on large space-time scales), the approximation is based on the idea of local thermodynamic equilibrium: locally, within fluid cells, the system is in a Galilean or relativistic boost of a Gibbs equilibrium state.

Collection/Series: 
Scientific Areas: 

 

Monday Jun 19, 2017
Speaker(s): 

Frustrated magnets provide a fertile ground for discovering exotic states of matter, such as those with topologically non-trivial properties. Motivated by several near-ideal material realizations, we focus on aspects of the two-dimensional kagome antiferromagnet. I present two of our works in this area both involving the spin-1/2 XXZ antiferromagnetic Heisenberg model. First, guided by a previous field theoretical study, we explore the XY limit ($J_z=0$) for the case of 2/3 magnetization (i.e.

Collection/Series: 
Scientific Areas: 

 

Friday Jun 16, 2017
Speaker(s): 

Many model quantum spin systems have been proposed to realize critical points or phases described by 2+1 dimensional conformal gauge theories. On a torus of size L and modular parameter τ, the energy levels of such gauge theories equal (1/L) times universal functions of τ. We compute the universal spectrum of QED3, a U(1) gauge theory with Nf two-component massless Dirac fermions, in the large-Nf limit.

Collection/Series: 
Scientific Areas: 

 

Tuesday May 23, 2017
Speaker(s): 

A fundamental assumption of quantum statistical mechanics is that closed isolated systems always thermalize under their own dynamics. Progress on the topic of many-body localization has challenged this vital assumption, describing a phase where thermalization, and with it, equilibrium thermodynamics, breaks down.

Collection/Series: 
Scientific Areas: 

 

Thursday May 18, 2017
Speaker(s): 

We classify quantum states proximate to the semiclassical Neel state of the spin S=1/2 square lattice antiferromagnet with two-spin near-neighbor and four-spin ring exchange interactions. Motivated by a number of recent experiments on the cuprates and the iridates, we examine states with Z_2 topological order, an order which is not present in the semiclassical limit. Some of the states break one or more of reflection, time-reversal, and lattice rotation symmetries, and can account for the observations. We discuss implications for the pseudogap phase.

Collection/Series: 
Scientific Areas: 

 

Tuesday May 09, 2017
Speaker(s): 

How can we quantify the entanglement between subsystems when we only have access to incomplete information about them and their environment?‎ Existing approaches (such as Rényi entropies) can only detect the short-range entanglement across a boundary between a subsystem and its surroundings, and then only if the whole system is pure. These methods cannot detect the long-range entanglement between two subsystems embedded in a larger system.

Collection/Series: 
Scientific Areas: 

 

Tuesday Apr 18, 2017

Recent studies of highly frustrated antiferromagnets (AFMs) have demonstrated the qualitative impact of virtual, longer-range singlet excitations on the effective RVB tunneling parameters of the low energy sector of the problem [1,2]. Here, I will discuss the current state of affairs on the RVB description of the spin-1/2 kagome AFM, and present new results that settle a number of issues in this problem [3].

 

[1] I. Rousochatzakis, Y. Wan, O. Tchernyshyov, and F. Mila, PRB 90,

100406(R) (2014)

Collection/Series: 
Scientific Areas: 

 

Tuesday Apr 11, 2017

We consider the problem of certifying entanglement and nonlocality in one-dimensional translation-invariant (TI) infinite systems when just averaged near-neighbor correlators are available. Exploiting the triviality of the marginal problem for 1D TI distributions, we arrive at a practical characterization of the near-neighbor density matrices of multi-separable TI quantum states. This allows us, e.g., to identify a family of separable two-qubit states which only admit entangled TI extensions.

Collection/Series: 
Scientific Areas: 

Pages