This series covers all areas of research at Perimeter Institute, as well as those outside of PI's scope.
We are fortunate to live in an era of great discoveries in particle physics and cosmology, and most of the theoretical understanding that made this possibile is based on effective field theories. In this talk, I will show how these powerful techniques can be applied across the spectrum of theoretical physics, and allow us to draw unexpected connections among very different systems. To illustrate this, I will discuss two interesting but very different phenomena, and show how they can both be described using a point-like particle effective theory.
Two seemingly different quantum field theories may secretly describe the same underlying physics — a phenomenon known as “duality”. Duality has been proved powerful in condensed matter physics, since many difficult questions can be drastically simplified in certain “dual” pictures. This is especially valuable for strongly interacting many-body problems, for which traditional tools (such as perturbation theory) are often not applicable.
The study of black holes has revealed a deep connection between quantum information and spacetime geometry. Its origin must lie in a quantum theory of gravity, so it offers a valuable hint in our search for a unified theory. Precise formulations of this relation recently led to new insights in Quantum Field Theory, some of which have been rigorously proven. An important example is our discovery of the first universal lower bound on the local energy density. The energy near a point can be negative, but it is bounded below by a quantity related to the information flowing past the point.
The recent detection of the binary neutron star merger GW170817 by LIGO and Virgo was followed by a firework of electromagnetic counterparts across the entire electromagnetic spectrum. In particular, the ultraviolet, optical, and near-infrared emission is consistent with a kilonova that provided strong evidence for the formation of heavy elements in the merger ejecta by the rapid neutron capture process (r-process).
Hidden-variables theories account for quantum mechanics in terms of a particular 'equilibrium' distribution of underlying parameters corresponding to the Born rule. In the most well-studied example, the pilot-wave theory of de Broglie and Bohm, it is well established that the Born rule may be understood to arise from a process of dynamical relaxation. This 'quantum relaxation' may have taken place in the very early universe and could have left imprints on the cosmic microwave background (CMB). Such imprints amount to signatures of the decay of early violations of the Born rule.
One of the most enduring mysteries in particle physics is the nature of the non-baryonic dark matter that makes up 85% of the matter in the universe. For several decades, most searches for this mysterious substance have focused on Weakly Interacting Massive Particles (WIMPs). Recently, there has been a surge in theoretical interest in ultra-light-field dark matter candidates, including QCD axions (spin 0 bosons) and hidden photons (spin 1 bosons), which can be probed through their coupling to electromagnetism or nuclear spin.
I will discuss the `holographic complexity conjecture', that seeks to relate the size of the wormhole that lies behind a black hole horizon to quantum computational complexity.
In his classic essay, “The Usefulness of Useless Knowledge,” Abraham Flexner, the founding director of the Institute for Advanced Study in Princeton and the man who helped bring Albert Einstein to the United States, describes a great paradox of scientific research. The search for answers to deep questions, motivated solely by curiosity and without concern for applications, often leads not only to the greatest scientific discoveries but also the most revolutionary technological breakthroughs. In short, no quantum mechanics, no computer chips.
The observations of gravitational waves from the mergers of compact binary sources opens a new way to learn about the universe as well as to test General Relativity in the limit of strong gravitational interactions – the dynamics of massive bodies traveling at relativistic speeds in a highly curved space-time. The lecture will describe some of the difficult history of gravitational waves proposed about 100 years ago.
Our sense of smell is extraordinarily good at molecular recognition: we can identify tens of thousands of odorants unerringly over a wide concentration range. The mechanism by which this happens is still hotly debated. One view is that molecular shape governs smell, but this notion has turned out to have very little predictive power. Some years ago I revived a discredited theory that posits instead that the nose is a vibrational spectroscope, and proposed a possible underlying mechanism, inelastic electron tunneling.