This series covers all areas of research at Perimeter Institute, as well as those outside of PI's scope.
Low-temperature phases of strongly-interacting quantum many-body systems can exhibit a range of exotic quantum phenomena, from superconductivity to fractionalized particles. One exciting prospect is that the ground or low-temperature thermal state of an engineered quantum system can function as a quantum computer. The output of the computation can be viewed as a response, or 'susceptibility', to an applied input (say in the form of a magnetic field).
String theory, famously, has a great many ground states. So many, in fact, that some argue that we should seek information in the statistical properties of these vacua, or worse, argue that we should abandon string theory as a theory with predictive power. On the other hand, very few vacua are known that look like the observed world of particle physics. In this talk I will review this situation and show that there are realistic models at the tip of the distribution of vacua, where topological complexity is minimised.
The Large Hadron Collider (LHC) is now running (after a rocky start). This talk reviews why the start was rocky and how this constrains the physics program over the next few years. I will briefly survey how 'naturalness'
arguments argue why something should be discovered, and why theoretical proposals fall into three main categories. If time permits I will close by telling you why I think the cosmological constant problem implies the LHC will strike paydirt and make quantum gravity an experimental science.
Cosmic inflation has given us a remarkably successful cosmological phenomenology. But the original goal of explaining why the cosmos is *likely* to take the form we observe has proven very difficult to realize. I review the status of "eternal inflation" with an eye on the roles various infinities have (both helpful and unhelpful) in our current understanding. I then discuss attempts to construct an alternative cosmological framework that is truly finite, using ideas about equilibrium and dark energy. I report some recent results that point to observable signatures.
Hubeny identified a scenario in which a charged particle falling toward a near-extreme Reissner-Nordstrom black hole can penetrate the black hole and drive it beyond the extremal limit, thereby giving rise to an apparent violation of cosmic censorship. A version of this scenario, relevant to a Kerr black hole and involving a particle with orbital and/or spin angular momentum, was recently examined by Jacobson and Sotiriou (following up on earlier work by Hod); here also the black hole is driven beyond the extremal limit.
In my talk I raise the question of the fundamental limits to the size of thermal machines - refrigerators, heat pumps and work producing engines - and I will present the smallest possible ones. I will also discuss the issue of a possible complementarity between size and efficiency and show that even the smallest machines could be maximally efficient. Finally I will present a new point of view over what is work and what do thermal machines actually do.
The quantum mechanical state vector is a complicated object. In particular, the amount of data that must be given in order to specify the state vector (even approximately) increases exponentially with the number of quantum systems. Does this mean that the universe is, in some sense, exponentially complicated? I argue that the answer is yes, if the state vector is a one-to-one description of some part of physical reality. This is the case according to both the Everett and Bohm interpretations.
Sage is a collection of mature open source software for mathematics, and new code, all unified into one powerful and easy-to-use package.
The mission statement of the Sage project is: "Creating a viable free open source alternative to Magma, Maple, Mathematica and Matlab."
More information is available at www.sagemath.org. I will use the Sage notebook (a web interface) to demonstrate the use of Sage for a variety of mathematical problems and comment on its design and future direction.
I will discuss the growth of entanglement under a quantum quench at point contacts of simple fractional quantum Hall fluids and its relation with the measurement of local observables. Recently Klich and Levitov recently proposed that, for a free fermion system, the noise generated from a local quantum quench provides a measure of the entanglement entropy. In this work, I will examine the validity of this proposal in the context of a strongly interacting system, the Laughlin FQH states.
I will describe the current state of our attempts to characterize the nature of the Dark Energy, the name given to the unknown phenomenology that is driving the observed accelerating cosmic expansion. There is a historical analogy between our current situation and the days of