Video Library

Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres.  Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.  Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA)PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org. 

  

 

Friday Sep 12, 2014
Speaker(s): 

At large N, an important sector of the ABJM field theory defined on a stack of N M2-branes can be described holographically by the D=4 N=8 SO(8)-gauged supergravity of de Wit and Nicolai. Since its inception, the latter has been tacitly assumed to be unique. Recently, however, a one-parameter family of SO(8) gaugings of N=8 supergravity has been discovered, the de Wit-Nicolai theory being just a member in this class. I will explain how this overlooked family of SO(8)-gauged supergravities is deeply related to electric/magnetic duality breaking in four dimensions.

Collection/Series: 
Scientific Areas: 

 

Friday Sep 12, 2014
Speaker(s): 

 

Friday Sep 12, 2014
Speaker(s): 

 

Thursday Sep 11, 2014
Speaker(s): 

This has been a leading question in condensed matter physics since the discovery of the cuprate superconductors. In this talk I will review some of the DMRG and tensor network results for the ground states of these models. A key question I'll address is the issue of stripes: are the ground states striped? Do stripes compete with or induce d-wave superconductivity? Another question I'll address is: how well does 2D DMRG do in comparison with iPEPS and quantum Monte Carlo. I will also show recent results for a standard 3-band Hubbard model for the cuprates.

Collection/Series: 
Scientific Areas: 

 

Thursday Sep 11, 2014
Speaker(s): 

Plasma-filled magnetospheres can extract energy from a spinning black hole and provide the power source for a variety of observed astrophysical phenomena. These magnetospheres are described by the highly nonlinear equations of force-free electrodynamics, or FFE. Typically these equations can only be solved numerically. In this talk I will explain how to analytically obtain several infinite families of exact solutions of the full nonlinear FFE equations very near the horizon of a maximally spinning black hole, where the energy extraction takes place.

Collection/Series: 
Scientific Areas: 

 

Thursday Sep 11, 2014
Speaker(s): 

 

Thursday Sep 11, 2014
Speaker(s): 

 

Wednesday Sep 10, 2014
Speaker(s): 

For an anyon model in two spatial dimensions described by a modular tensor category, the topological S-matrix encodes the mutual braiding statistics, the quantum dimensions, and the fusion rules of anyons. It is nontrivial whether one can compute the topological S-matrix from a single ground state wave function. In this talk, I will show that, for a class of Hamiltonians, it is possible to define the S-matrix regardless of the degeneracy of the ground state. The definition manifests invariance of the S-matrix under local unitary transformations (quantum circuits).

Scientific Areas: 

 

Wednesday Sep 10, 2014
Speaker(s): 

Recently a new and rather unexpected connection between condensed matter physics and algebraic topology has been noted. Namely, it appears that phases of matter with an energy gap, no long-range entanglement, and fixed symmetry can be classified using cobordism theory. I will exhibit several examples of this connection and describe a possible explanation.

Collection/Series: 

 

Wednesday Sep 10, 2014
Speaker(s): 

Pages