A A   
Connect with us:      

2010/11 PSI Lectures

Watch recorded courses from 2010/2011 PSI Lecture Series

Theoretical Physics - Nima Arkani-Hamed

Maths and Mathematica - Pedro Vieira

Quantum Theory - Ben Schumacher

  • Lecture 1 - Unitary time evolution
  • Lecture 2 - Heisenberg and Schroedinger Pictures. Rotation of spin-1/2 particles
  • Lecture 3 - Conservation laws, symmetries and generators
  • Lecture 4 - Angular momentum. Path integral
  • Lecture 5 - Path integral continued
  • Lecture 6 - Composite systems. Addition of angular momenta
  • Lecture 7 - Entanglement; CHSH inequality
  • Lecture 8 - Density operator; Bloch sphere
  • Lecture 9 - Partial trace; Schmidt decomposition; Open system dynamics; Kraus operators
  • Lecture 10 - Markovian approximation and Lindblad equation. CP maps. Wonderful theorem
  • Lecture 11 - Generalized measurements. Application to thermodynamics. Entropy
  • Lecture 12 - Distinguishability. No signaling. Decoding theorem. Information isolation theorem. No cloning theorem as a corollary to information isolation theorem
  • Lecture 13 - Quantum computation. Quantum gates
  • Lecture 14 - Quantum circuits. Function evaluation. Deutsch-Jozsa Problem
  • Lecture 15 - NMR for quantum computing

Relativity - Neil Turok

  • Lecture 1 - Special Relativity: Lorentz transform., Maxwell equations
  • Lecture 2 - Special Relativity: 4-velocity, 4-momentum, rest energy
  • Lecture 3 - Stress-energy tensor. Curved manifolds and tensors
  • Lecture 4 - Principle of equivalence, metric tensor, connections
  • Lecture 5 - Properties of metric tensor, transform. of tensors, torsion
  • Lecture 6 - Riemann and Ricci tensors and their properties
  • Lecture 7 - Geodesics, and geodesic deviations; Newtonian gravity
  • Lecture 8 - Einstein's equations and their properties
  • Lecture 9 - Schwarzschild solution and gravitational radius
  • Lecture 10 - Einstein-Hilbert action, variational principle
  • Lecture 11 - Particle in a gravitational field, bending of light
  • Lecture 12 - Black holes, Eddington-Finkelstein coordinates
  • Lecture 13 - Event horizon, Kruskal coordinates, gravitational collapse
  • Lecture 14 - Rotating black holes, Kerr metric, ergosphere
  • Lecture 15 Part1 Part2 - Introduction to Cosmology

Quantum Field Theory 1 - Konstantin Zarembo

Statistical Mechanics - Leo Kadanoff

  • Lecture 1 - Outline of the course
  • Lecture 2 - Probabilities and distributions
  • Lecture 3 - Gaussian distribution, partition function
  • Lecture 4 - Classical (Ising) and quantum (Heisenberg) spin chains
  • Lecture 5 - Renormalization in one dimension, transfer matrix
  • Lecture 6 - Two-dimensional Ising model, duality and critical point.
  • Lecture 7 - Random walks and diffusion equation
  • Lecture 8 - Brownian motion, Einstein's dynamics
  • Lecture 9 - Hamiltonian dynamics, Liouville's theorem
  • Lecture 10 - Boltzmann equation, detailed balance and H-theorem
  • Lecture 11 - Phase transitions: history and mean-field approach
  • Lecture 12 - Phase transitions: renormalization near critical point
  • Lecture 13 - Elements of Conformal Field Theory

Quantum Field Theory 2 - François David

  • Lecture 1 - Path integral quantization. Imaginary time. Quantum mechanics at finite temperature. Analogy with statistical mechanics
  • Lecture 2 - Path integral quantization. Imaginary time. Quantum mechanics at finite temperature. Analogy with statistical mechanics
  • Lecture 3 - The Wick rotation and Wick's theorem
  • Lecture 4 - phi^4 perturbation theory. Generating functionals for correlation functions
  • Lecture 5 - Generating functional for connected Green's functions. The quantum effective action
  • Lecture 6 - The quantum effective action continued. Feynman amplitudes and their short distance singularities
  • Lecture 7 - Short distance singularities of Feynman amplitudes continued. Operator product expansion
  • Lecture 8 - Renormalization of massless phi^4 theory
  • Lecture 9 - Renormalization group. The Beta function of massless phi^4 theory
  • Lecture 10 - Grassmann algebra. Berezin calculus. Wick's theorem for fermions. Feynman propagator for Dirac fields
  • Lecture 11 - Gauge theories. Non-abelian gauge theories. Action of Yang-Mills theory coupled to SU(2) Dirac fermions
  • Lecture 12 - Feynman rules for Yang-Mills theory coupled to SU(2) Dirac fermions. Problems related to gauge-fixing
  • Lecture 13 - Quantization of non-abelian gauge theories. Faddeev-Popov determinant
  • Lecture 14 - Feynman rules and the beta function of non-abelian gauge theories
  • Lecture 15 - The Wilsonian Renormalization Group

Scientific Computation - Erik Sorensen

  • Lecture 1 - Fortran90 basics: types of data, building blocks, interface
  • Lecture 2 - Fortran90: attributes, subroutines, scope rules
  • Lecture 3 - Fortran 90: modules, arrays, intrinsic procedures
  • Lecture 4 - Storage of variables in memory, elementary operations
  • Lecture 5 - Root finding; continued fractions
  • Lecture 6 - Computational errors and methods to reduce them
  • Lecture 7 - Differentiation; Richardson extrapolation
  • Lecture 8 - Methods for numerical integration
  • Lecture 9 - Schrodinger equation: Numerov's algorithm
  • Lecture 10 - Differential equations; predictor-corrector methods
  • Lecture 11 - Linear algebra: eigenvalue problem, Jacobi method
  • Lecture 12 - Linear algebra: Lanczos diagonalization
  • Lecture 13 - Generators of random numbers; Box-Muller algorithm
  • Lecture 14 - Monte Carlo integration; Metropolis algorithm
  • Lecture 15 - Quantum Monte Carlo simulations

Conformal Field Theory - Jaume Gomis

Mathematical Physics - Carl Bender

  • Lecture 1 - Introduction to Perturbation theory
  • Lecture 2 - Physical interpretation of singularities in perturbation theory: The anharmonic oscillator
  • Lecture 3 - Shanks transformation
  • Lecture 4 - Richardson extrapolation
  • Lecture 5 - Fourier Series
  • Lecture 6 - Convergence of Fourier series and Gibbs phenomenon
  • Lecture 7 - Fourier series and divergent series
  • Lecture 8 - Euler and Borel summation of series
  • Lecture 9 - Continued functions and continued fractions
  • Lecture 10 - Pade approximation
  • Lecture 11 - Feynman diagrams and Pade approximants
  • Lecture 12 - Feynman diagrams in 1+0 dimensional field theory
  • Lecture 13 - Asymptotics basics, Asymtotic approximate solutions to differential equations and WKBJ approximation
  • Lecture 14 - Asymptotic series, Stokes phenomena, Stieltjes series and Stieltjes functions
  • Lecture 15 - Stiltjes functions, Carleman condition, perturbation theory and dispersion relation 

Standard Model (Review) - Michael Peskin

Condensed Matter (Review) - John Berlinsky

Foundations of Quantum Mechanics (Review) - Rob Spekkens

  • Lecture 1 - The Orthodox postulates of Quantum Theory and the Realistic Strategy
  • Lecture 2 - Operational formulation of quantum theory
  • Lecture 3 - The most general types of preparations. The most general types of measurements: POVMs
  • Lecture 4 - The most general type of transformations and axiomatizations of quantum theory.
  • Lecture 5 - Axiomatic Quantum Mechanics(Lecture by Lucien Hardy)
  • Lecture 6 - Realism via hidden variables
  • Lecture 7 - Evidence in favour of PSI-epistemic hidden variable models
  • Lecture 8 - Classical complementarity as an epistemic restriction
  • Lecture 9 - Bell's Theorem
  • Lecture 10 - Non-locality in more depth
  • Lecture 11 - Generalized notions of non-contextuality
  • Lecture 12 - Non-contextuality and Classicality; The deBroglie-Bohm Interpretation
  • Lecture 13 - The deBroglie-Bohm Interpretation
  • Lecture 14-  Remaining questions on deBroglie-Bhom; Collapse Theories
  • Lecture 15 - The Many Worlds Interpretation of Quantum Mechanics

Quantum Gravity (Review) - Renate Loll

  • Lecture 1 - What is Quantum Gravity about?
  • Lecture 2 - Linearized Einstein Equations and Gravitational Waves
  • Lecture 3 - Quantization of Gravitational Waves
  • Lecture 4 - Gravitational Path Integral
  • Lecture 5 - Perturbative Gravity
  • Lecture 6 - Canonical Quantization
  • Lecture 7 - Constrained Hamiltonian Systems
  • Lecture 8 - Arnowitt-Deser-Misner Formalism
  • Lecture 9 - Dirac Algebra and Quantizing the Constrained Systems
  • Lecture 10 - Wheeler-DeWitt Equations
  • Lecture 11 - Loop Quantum Gravity
  • Lecture 12 - Wilson Loops in Quantum Gravity
  • Lecture 13 - Dynamical Triangulations
  • Lecture 14 - Nonperturbative Path Integral in Terms of Dynamical Triangulations
  • Lecture 15 - Some Results Related to the Causal Dynamical Triangulations Approach

Gravitational Physics (Review) - Ruth Gregory

  • Lecture 1 - The Mathematical Toolbox of General Relativity
  • Lecture 2 - The Lie Derivative and Exterior Derivative
  • Lecture 3 - The Covariant Derivative and Cartan's Structural Equations
  • Lecture 4 - The Spacetime around a Star
  • Lecture 5 - Beginning with Black Holes
  • Lecture 6 - Observing Black Holes
  • Lecture 7 - Exploring the C-metric
  • Lecture 8 - Integration on Manifolds
  • Lecture 9 - Gauss-Codazzi Formalism
  • Lecture 10 - Gibbons-Hawking Boundary Term; Black Hole Thermodynamics
  • Lecture 11 - Black Holes in Extra Dimensions
  • Lecture 12 - Kaluza-Klein Compactification and Monopoles
  • Lecture 13 - Linear Perturbation Theory & the Black String Instability
  • Lecture 14 - Domain Walls, the Israel Equations & Randall-Sundrum Models
  • Lecture 15 - Braneworld Cosmology

Cosmology (Review) - Latham Boyle

  • Lecture 1 - Review of Differential Geometry
  • Lecture 2 - Differential Geometry and Palatini Action
  • Lecture 3 - Yang-Mill's Theory; Maximally Symmetric Space Times
  • Lecture 4 - Maximally Symmetric Space Times and FRW Universes
  • Lecture 5 - FRW Space Times: Kinematics
  • Lecture 6 - FRW Space Times: Kinematics and Dynamics
  • Lecture 7 - FRW Universes
  • Lecture 8 - Thermodynamics in an Expanding Universe; Freeze out & Big Bang Nucleosynthesis
  • Lecture 9 - Big Bang Nucleosynthesis; Cosmic Microwave Background (CMB)
  • Lecture 10 - Dark Matter
  • Lecture 11 - WIMPS: Hot Thermal Relics
  • Lecture 12 - WIMPS: Cold Thermal Relics, Non-Thermal Relics and Baryogenesis
  • Lecture 13 - Baryogenesis Inflation; The Flatness Problem; The Horizon Problem
  • Lecture 14 - The Single Field Slow Roll Inflation
  • Lecture 15 - Perturbations and Power Spectrum

Quantum Information (Review) - Daniel Gottesman

String Theory (Review) - Freddy Cachazo

Beyond the Standard Model (Review) - Veronica Sanz

  • Lecture 1 - Introduction to BSM Physics; Dark Matter
  • Lecture 2 - Baryon Asymmetry; Neutrino Mass; The Hierarchy Problem
  • Lecture 3 - Global, Local, Spontaneously Broken & Accidental Symmetries; Confronting BSM models with data
  • Lecture 4 - Supersymmetry; Cancellation of Quadratic Divergences
  • Lecture 5 - The Susy Algebra and its Representations; the Minimal Supersymmetric Standard Model and Soft Susy Breaking
  • Lecture 6 - Dark Matter; Gauge Coupling Unification; Supersymmetry breaking
  • Lecture 7 - Supersymmetry Breaking; The Supertrace; Gauge and Gravity Mediation Scenarios
  • Lecture 8 - Introduction to Extra Dimensions; The ADD Scenario (Large Extra Dimensions); Collider Signatures (Black Holes)
  • Lecture 9 - Generating Hierarchies without Symmetry; Randall-Sundrum Models; Wavefunction Localisation
  • Lecture 10 - Custodial Symmetry; Model Building with Strong-Coupled Dynamics; Seiberg Duality
  • Lecture 11 - Scalar Fields in AdS; Holography & Phenomenology
  • Lecture 12 - Building Holographic Models of ElctroWeak Symmetry Breaking
  • Lecture 13 - Holographic Technicolor and ElectroWeak Precision Data; Extra-dimensional Higgs as a Pseudo-Goldstone Boson
  • Lecture 14 - Q & A Session: Naive Dimensional Analysis, QFT on a Lattice