The Planet Within: Caves from Earth to Mars and Beyond

We can set foot on faraway planets, in a sense, by exploring the world beneath our
feet. Underground caves provide unique insights into what we might find beneath
alien landscapes. We are studying caves on Earth to understand how they
form, the spectacular minerals they produce, and the unusual creatures – from
microbes to vertebrates – that thrive in them.

By understanding the caves of our own planet, we can use them as models for the
subsurfaces of other planets. This work provides insights into the lava tubes

Meet a Scientist - Prof. Sumit R. Das

Mathematical methods in superstring theory with applications to black hole physics (e.g. Hawking radiation) and models of the fundamental forces of nature.

Meet a Scientist - Prof. Neta A. Bahcall

Observational cosmology, with particular focus on the formation and evolution of large scale structures in our universe like clusters of galaxies as large as 500 million light years. “Weighing” the universe, and mapping out the mysterious dark matter it contains.

Meet a Scientist - Dr. Olivier Dore

The origin and evolution of the largest observable structures in the universe (much larger than entire galaxies); understanding why the expansion of the universe is accelerating. Observational techniques: cosmic microwave background, gravitational lensing and gravity waves.

Meet a Scientist - Chanda Prescod-Weinstein

Cosmology and cosmological implications of quantum gravity. Observable effects in cosmology help to identify the limits of general relativity, which could potentially be surpassed by modified theories of gravity and/or quantum gravity.

Meet a Scientist - Dr. Jean-Luc Lehners

What, exactly, happened around the time of the Big Bang? Exploring new models inspired by superstring theory and supergravity, e.g. ones in which we live on “branes” that collide with a “big bang”. Satellite experiments to test such models.

Meet a Scientist - Dr. Bernd Schroers

Mathematical aspects of modern theories of elementary particles and gravitation. Replacing the notion of particles with fundamental abstract fields (magnetic monopoles, vortices and Skyrmions) in an attempt to approach a formulation for quantum gravity.

Meet a Scientist - Prof. Robert Brandenberger

Cosmology as a natural meeting ground for fundamental theory (e.g. superstring theory or quantum gravity) and observations. Exploring how seeds laid down in the very early universe developed into the large scale structure we observe in the universe today.

Meet a Scientist - John Norton

Philosophy of physics, puzzles about the content and status of foundational principles – the logic of physicists’ basic assumptions, especially with regards to space and time, and the history of science, e.g. exactly how Einstein made his discoveries.

Meet a Scientist - Christopher Fuchs

Applications of quantum theory to cryptography and computation; understanding in more concrete, physical terms what quantum theory is telling us about the nature of reality. Applications of information theory to better understand the quantum “wave function”.