Towards construction of a Wightman QFT in four dimensions

We prove that the $\lambda\phi^4_4$ quantum field theory on noncommutative Moyal space is, in the limit of infinite noncommutativity, exactly solvable in terms of the solution of a non-linear integral equation. The proof involves matrix model techniques which might be relevant for 2D quantum gravity and its generalisation to coloured tensor models of rank $\geq 3$. Surprisingly, our limit describes Schwinger functions of a Euclidean quantum field theory on standard $\mathbb{R}^4$ which satisfy the easy Osterwalder-Schrader axioms boundedness, covariance and symmetry. We prove that the decisive reflection positivity axiom is, for the 2-point function, equivalent to the question whether or not the solution of the integral equation is a Stieltjes function. The numerical solution of the integral equation leaves no doubt that this is true for coupling constants $\lambda\in[-0.39,0]$.

Event Type: 
Scientific Area(s): 
Event Date: 
Tuesday, August 19, 2014 - 14:00 to 15:30
Time Room
Room #: