- Home »
- Testing microscopic discretization

What can we say about the spectra of a collection of microscopic variables when only their coarse-grained sums are experimentally accessible? In this paper, using the tools and methodology from the study of quantum nonlocality, we develop a mathematical theory of the macroscopic fluctuations generated by ensembles of independent microscopic discrete systems. We provide algorithms to decide which multivariate gaussian distributions can be approximated by sums of finitely-valued random vectors. We study non-trivial cases where the microscopic variables have an unbounded range, as well as asymptotic scenarios with infinitely many macroscopic variables. From a foundational point of view, our results imply that bipartite gaussian states of light cannot be understood as beams of independent d-dimensional particle pairs. It is also shown that the classical description of certain macroscopic optical experiments, as opposed to the quantum one, requires variables with infinite cardinality spectra.

Collection/Series:

Event Type:

Seminar

Scientific Area(s):

Speaker(s):

Event Date:

Tuesday, April 18, 2017 - 15:30 to 17:00

Location:

Time Room

©2012 Perimeter Institute for Theoretical Physics