- Home »
- The Necromancy-Hardness of the Schrödinger's Cat Experiment

COVID-19 information for PI Residents and Visitors

Motivated by puzzles in quantum gravity AdS/CFT, Lenny Susskind posed the following question: supposing one had the technological ability to distinguish a macroscopic superposition of two given states |v> and |w> from incoherent mixture of those states, would one also have the technological ability to map |v> to |w> and vice versa? More precisely, how does the quantum circuit complexity of the one task relate to the quantum circuit complexity of the other? Here we resolve Susskind's question -- showing that the two complexities are essentially identical, even for approximate versions of these tasks, with the one caveat that a unitary transformation that maps |v> to |w> and |w> to -|v> need not imply any distinguishing ability. Informally, "if you had the ability to prove Schrödinger's cat was in superposition, you'd necessarily also have the ability to bring a dead cat back to life." I'll also discuss the optimality of this little result and some of its implications.

Paper (with Yosi Atia) in preparation

COVID-19 information for PI Residents and Visitors

Collection/Series:

Event Type:

Seminar

Speaker(s):

Event Date:

Wednesday, January 29, 2020 - 16:00 to 17:30

Location:

Bob Room

Room #:

405

Share This PageShare this on TwitterShare on FacebookPublish this post to LinkedInSubmit this post on reddit.com

©2012 Perimeter Institute for Theoretical Physics