- Home »
- Holomorphic Floer theory and deformation quantization

COVID-19 information for researchers and visitors

Geometry of a pair of complex Lagrangian submanifolds of a complex symplectic manifold appears in many areas of mathematics and physics, including exponential integrals in finite and infinite dimensions, wall-crossing formulas in 2d and 4d, representation theory, resurgence of WKB series and so on.

In 2014 we started a joint project with Maxim Kontsevich which we named "Holomorphic Floer Theory" (HFT for short) in order to study all these (and other) phenomena as a part of a bigger picture.

Aim of my talk is to discuss aspects of HFT related to deformation quantization of complex symplectic manifolds, including the conjectural Riemann-Hilbert correspondence. Although some parts of this story have been already reported elsewhere, the topic has many ramifications which have not been discussed earlier.

COVID-19 information for researchers and visitors

Collection/Series:

Event Type:

Seminar

Scientific Area(s):

Speaker(s):

Event Date:

Thursday, March 19, 2020 - 11:00 to 12:30

Location:

Space Room

Room #:

400

Share This PageShare this on TwitterShare on FacebookPublish this post to LinkedInSubmit this post on reddit.com

©2012 Perimeter Institute for Theoretical Physics