Holographic entanglement entropy in AdS(4)/BCFT(3) and the Willmore functional

In the context of the AdS(4)/BCFT(3) correspondence, we study the holographic entanglement entropy for spatial regions having arbitrary shape. An analytic expression for the subleading term with respect to the area law is discussed. When the bulk spacetime is a part of AdS(4),
this formula becomes the Willmore functional with a proper boundary term evaluated on the minimal surface viewed as a submanifold of the three dimensional flat Euclidean space with a boundary. 
Numerical checks of this formula are performed through a code which allows to construct minimal area surfaces anchored to generic curves. For some simple regions like infinite strips and disks, analytic results are obtained and they confirm the general expression for the subleading term. In particular, when the spatial region contains corners adjacent to the boundary, a logarithmic divergence occurs whose coefficient is determined by a so-called corner function which depends on the boundary conditions. An analytic expression for the holographic corner function and its checks are also discussed.

Collection/Series: 
Event Type: 
Seminar
Scientific Area(s): 
Speaker(s): 
Event Date: 
Tuesday, September 11, 2018 - 14:30 to 16:00
Location: 
Space Room
Room #: 
400