- Home »
- Good Approximate Quantum LDPC Codes from Spacetime Circuit Hamiltonians

COVID-19 information for PI Residents and Visitors

We study approximate quantum low-density parity-check (QLDPC) codes, which are approximate quantum error-correcting codes specified as the ground space of a frustration-free local Hamiltonian, whose terms do not necessarily commute. Such codes generalize stabilizer QLDPC codes, which are exact quantum error-correcting codes with sparse, low-weight stabilizer generators (i.e. each stabilizer generator acts on a few qubits, and each qubit participates in a few stabilizer generators). Our investigation is motivated by an important question in Hamiltonian complexity and quantum coding theory: do stabilizer QLDPC codes with constant rate, linear distance, and constant-weight stabilizers exist? We show that obtaining such optimal scaling of parameters (modulo polylogarithmic corrections) is possible if we go beyond stabilizer codes: we prove the existence of a family of [[N,k,d,ε]] approximate QLDPC codes that encode k = Ω(N/polylog N) into N physical qubits with distance d = Ω(N/polylog N) and approximation infidelity ε = 1/polylog N. We prove the existence of an efficient encoding map, and we show that arbitrary Pauli errors can be locally detected by circuits of polylogarithmic depth. Finally, we show that the spectral gap of the code Hamiltonian is Ω(N^(-3.09)) (up to polylog(N) factors) by analyzing a spacetime circuit-to-Hamiltonian construction for a bitonic sorting network architecture that is spatially local in polylog(N) spatial dimensions. (Joint work with Elizabeth Crosson, Chinmay Nirkhe, and Henry Yuen, arXiv:1811.00277)

COVID-19 information for PI Residents and Visitors

Collection/Series:

Event Type:

Seminar

Scientific Area(s):

Speaker(s):

Event Date:

Wednesday, May 15, 2019 - 16:00 to 17:30

Location:

Bob Room

Room #:

405

Share This PageShare this on TwitterShare on FacebookPublish this post to LinkedInSubmit this post on reddit.com

©2012 Perimeter Institute for Theoretical Physics