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Asymptotics in resource theories

▷ In resource theories, asymptotics are usually easy.

▷ It makes sense to study asymptotics first.

▷ Historical examples:

▷ Monge 1781: optimal transportation.

▷ Carnot 1824: Carnot efficiency.

▷ Kantorovich 1939: linear programming.

▷ Shannon 1948: channel coding theorem.

▷ For example, Shannon’s theorem is asymptotic and has resulted in the
development of coding theory.



Majorization
Let

p = (p1 ≥ . . . ≥ pn > 0), q = (q1 ≥ . . . ≥ qm > 0)

be probability vectors.

Proposition
The following are equivalent:
▷ There is a bistochastic matrix T such that

Tp = q.

▷ For all k ,
k∑

i=1

pi ≥
k∑

i=1

qi .

When these hold, we say that p majorizes q,

p ⪰ q.



Majorization

▷ Intuition: q contains more randomness than p.

Theorem (Nielsen ’99)
For bipartite pure-state entanglement,

|ψ⟩ LOCC−→ |ϕ⟩

if and only if the spectra of the reduced density matrices display
majorization,

|ψ⟩⟨ψ|↓A ⪰ |ϕ⟩⟨ϕ|↓A.

▷ Provides an easy-to-use criterion for LOCC.

▷ What about the asymptotics?

▷ Since |ψ⟩ 7→ |ψ⟩⟨ψ|↓A preserves tensor products, it’s enough to
consider asymptotic majorizarion.



The Rényi entropies

Hα(p) :=
1

1 − α
log

(∑
i

pαi

)

will play an important role.

Special cases:

H0(p) = log |{i | pi > 0}|

H1(p) = −
∑
i

pi log pi

H∞(p) = − logmax
i

pi .



Asymptotic majorization

Theorem (Jensen ’19)
If

Hα(p) > Hα(q) ∀α ∈ [0,∞],

then
p⊗n ⪯ q⊗n ∀n ≫ 1.

Conversely, p⊗n ⪯ q⊗n for some n implies Hα(p) ≥ Hα(q).

▷ Implies a rate formula (TF ’17):

R(|ψ⟩ → |ϕ⟩) = inf
α

Hα(|ψ⟩⟨ψ|↓A)
Hα(|ϕ⟩⟨ϕ|↓A)



Catalytic majorization

Theorem (Klimesh ’07, Turgut ’07)
If

Hα(p) > Hα(q) ∀α ∈ [0,∞],

then
∃r : p ⊗ r ⪯ q ⊗ r .

Conversely, p ⊗ r ⪯ q ⊗ r implies Hα(p) ≥ Hα(q).

▷ Why are asymptotic and catalytic majorization essentially equivalent?

▷ And what’s special about the Hα?

▷ I will answer these questions and explain the general theorem.



▷ The Rényi entropies are additive monotones:

▷ Additivity:
Hα(p ⊗ q) = Hα(p) + Hα(q).

▷ Monotonicity:
p ⪯ q =⇒ Hα(p) ≥ Hα(q).

▷ There are other additive monotones, such as H0 + H1.

▷ So something is still missing.



▷ Instead of the Hα, consider just

∥p∥α =
∑
α

pαi

for α ̸= 1,∞.

▷ We can use ∥p∥α > ∥q∥α instead of Hα(p) > Hα(q).

▷ The ∥ · ∥α satisfy multiplicativity

∥p ⊗ q∥α = ∥p∥α∥q∥α

and monotonicity,

p ⪯ q =⇒ ∥p∥α ≥ ∥q∥α.



▷ They also satisfy additivity under direct sum

∥p ⊕ q∥α = ∥p∥α + ∥q∥α

if we allow unnormalized probability vectors.

▷ Therefore they are monotone semiring homomorphisms

Major −→ R+.

Definition
An ordered semiring (S ,+, ·,≥) is an algebraic structure satisfying the
usual equations, and

x ≥ y =⇒ x + z ≥ y + z , xz ≥ yz ,

▷ Major is ordered semiring of probability vectors with (⊕,⊗,⪯).



▷ But what about H1 and H∞?

▷ For H∞, consider instead

∥p∥∞ = max
i

pi .

▷ Still a multiplicative monotone.

▷ But now
∥p ⊕ q∥∞ = max(∥p∥∞, ∥q∥∞).

Definition
The tropical reals are the ordered semiring

TR+ := ([0,∞),max, ·,≥).



▷ What about H1?

▷ No well-behaved “exponential” exists.

▷ Still have additivity

H1(p ⊕ q) = H1(p) + H1(q)

and monotonicity.

▷ Not the usual “additivity” of entropy!

▷ On tensor products, we have the Leibniz rule

H1(p ⊗ q) = H1(p) ∥q∥1 + ∥p∥1H1(q).

We say that H1 is a derivation at ∥ · ∥1.



To summarize, the following types of monotones are important:

▷ Semiring homomorphisms Major → R+.

▷ Semiring homomorphisms Major → TR+.

▷ The derivations at ∥ · ∥1.



Theorem (With Farooq, Haapasalo, Tomamichel)
(a) The ∥ · ∥α for α ̸= ∞ are all the monotone homs Major → R+.

(b) ∥ · ∥∞ is the only monotone hom Major → TR+.

(c) H1 is (essentially) the only derivation at ∥ · ∥1.

▷ Sketch: Let f : Major → R+ be a monotone hom. Then

f (p1, . . . , pn) = f (p1) + · · ·+ f (pn).

So it’s enough to look at vectors of length 1!

▷ On those, we have the Cauchy functional equation

f (pq) = f (p)f (q),

whose only well-behaved solutions are the power functions f (p) = pα.



General case

▷ Now let’s generalize to a statement that should apply to many other
resource theories too!

▷ So let S be any suitably well-behaved ordered semiring and

∥ · ∥ : S −→ R+

any homomorphism such that

p ≤ q =⇒ ∥p∥ = ∥q∥.

▷ Let us say that the relevant monotones are those described above:

▷ Monotone homs S → R+.

▷ Monotone homs S → TR+.

▷ Monotone derivations S → R at ∥ · ∥.



Theorem (Vergleichsstellensatz)
Let nonzero x , y ∈ S satisfy ∥x∥ = ∥y∥. If

f (x) > f (y)

for all relevant monotones f , then:

▷ There is nonzero c such that

xc ≥ yc .

▷ If x is sufficiently generic,

xn ≥ yn ∀n ≫ 1.

Conversely, if xc ≥ yc for nonzero c or xx ≥ yn for some n ≥ 1, then

f (x) ≥ f (y)

for all relevant monotones.



▷ Provides an almost tight criterion for asymptotic and catalytic
convertibility very generally.

▷ In particular, shows that asymptotic and catalytic convertibility are
essentially equivalent.

▷ Recovers known statements on asymptotic and catalytic majorization.

▷ Other applications?



Application to representation theory

▷ Representations form an ordered semiring with respect to ⊕, ⊗ and
containment.

Theorem
For representations of SU(2), the relevant monotones are parametrized by
α ∈ [0,∞],

fα(U) :=
∑
i

sinh(α dim(Ui ))

sinhα
.

where U =
⊕

β Ui with irreducible Ui ,



Application to representation theory

▷ How many spin-1
2 qubits do we need in order to simulate n ≫ 1

systems of spin 1, respecting the symmetry?

▷ This can now be computed explicitly: we need Rn, where the rate R is

R = R(spin 1
2 → spin 1) = inf

α≥0

log sinh(2α)
sinh(a)

log sinh(3α)
sinh(α)

=
1
2
.



Final thoughts 1

▷ Ordered semirings provide a general framework for resource theories
with powerful mathematical results.

▷ Applying these gives non-constructive proofs for the existence of
information processing protocols.

▷ No notion of “free resource” or “free operation” is relevant!



Final thoughts 2

▷ Epsilonification is the big open problem: build in approximations in
the asymptotics such that e.g. Shannon’s channel coding theorem
comes out of a general theory as well.

Conjecture
In an epsilonified resource theory, only the derivations are relevant.

▷ E.g. in thermodynamics, this should amount to the free energies, since
both entropy and energy are derivations:

E (ρ⊗ η) = E (ρ) ∥η∥1 + ∥ρ∥1E (η).

▷ Unfortunately, finding the “right” definitions has turned out to be very
difficult.



Quantum thermodynamics[3]

Consider a system with finite-dimensional Hilbert space Cd and Hamiltonian H.
A state ρ has energy E (ρ) = tr(ρH) and entropy S(ρ) = −tr(ρ log ρ).

Theorem
For states ρ and σ, the following are equivalent:

(a) There exists an ancilla system of size o(n) with state η and Hamiltonian
Hanc satisfying ∥Hanc∥ ≤ o(n) and an energy-preserving unitary U with∥∥Tranc

[
U(ρ⊗n ⊗ η)U†]− σ⊗n

∥∥
1

n→∞−→ 0.

(b) The states have equal energy and entropy,

E (ρ) = E (σ), S(ρ) = S(σ).

[1] Carlo Sparaciari, Jonathan Oppenheim, and Tobias Fritz. “A Resource Theory for
Work and Heat”. In: Phys. Rev. A 96, 052112 (2017). arXiv:1607.01302.

https://arxiv.org/abs/1607.01302


Definition
A macrostate is an equivalence class of states with respect to asymptotic
interconvertibility as in the theorem.

By the theoerm, macrostates correspond to pairs (E ,S) that can be jointly
attained.

The set of macrostates forms the energy-entropy diagram:

Emin Emax

0

log d

β = +∞

β = 0

β = −∞

Expected energy E

En
tr

op
y
S



Example: The maximum extractable work per copy of a state ρ is given by
the horizontal distance to the boundary:

ρ⊗ngarbage

empty battery full battery

work

E

S

Similarly: analysis of heat engines with finite (but large) reservoirs!



Linear programming



Linear programming

▷ Linear programming is appropriate and useful whenever:

▷ Resources are arbitrarily divisible.

▷ They come in finitely many types.

▷ Finitely many basic conversions.

▷ In general, all of them fail!

▷ So what replaces linear programming?

▷ I will explain some results in this direction.



What are resources?

Resources can be converted into each other via processes, such as:

timber + nails Carpentry−−−−−−→ table

The details vary with the context:

▷ Communication:

noisy channel Channel coding−−−−−−−−−→ perfect channel

▷ Thermodynamics:

hot gas + cold gas Carnot process−−−−−−−−−→ gas + work

▷ Industrial chemistry:

N2 + 3 H2
Haber process−−−−−−−−→ 2 NH3



A mathematical theory of resources

▷ Pattern: convertibility and combinability of resource objects.

▷ One investigates questions on catalysis, asymptotic rates,. . .

Definition ([4])
An ordered commutative monoid is a structure (A,+, 0,≥) such that:

x + y = y + x (x + y) + z = x + (y + z) x + 0 = x

x ≥ y ≥ z ⇒ x ≥ z .

x ≥ y ⇒ x + z ≥ y + z .

▷ No notion of “free resource” or “free operation” is needed.

[4] Tobias Fritz. “Resource convertibility and ordered commutative monoids”. In: Math.
Structures Comput. Sci. 27.6 (2017), pp. 850–938.



▷ Conceptual insights:

▷ Catalysts = tools.

▷ Allowing free use of catalysts ∼= having banks to borrow from.

▷ Considering asymptotics ∼= efficiency of scale and mass production.

▷ Asymptotic structure of a resource theory: two convex cones in a
vector space.

▷ One for resource objects;

▷ One for resource conversion: x ≥ y asymptotically iff x − y in this
cone.

▷ Main open problem: how to build in approximations?

▷ However, we can still exploit the conceptual insights in quantum
information theory, for example in quantum thermodynamics!


