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Why categorical probability?

In no particular order:

Applications to probabilistic programming.

v

v

Prove theorems in greater generality and with more intuitive proofs.
> Reverse mathematics: sort out interdependencies between theorems.

Ultimately, prove theorems of higher complexity?

v

v

Simpler teaching of probability theory. (String diagrams!)

> Different conceptual perspective on what probability is.



Many of us like to reason about processes in terms of string diagrams:

output

process

input



We can compose processes into networks:

apph pie

bake
////////;;::ii/ dough
’shce‘ ’shce‘

| peel | peel |

apple apple flour butter sugar




Suppose that we want to reason about flow of information in a medical
trial. Then we seem to need diagrams like this:

outcome

compliance

medical
condition

— Medical condition has an influence on both trial compliance and on
treatment outcome!



Hence a theory of information flow needs additional pieces of structure:

> copying information:

> deleting information:



Definition
A Markov category C is a symmetric monoidal category supplied with
copying and deleting operations on every object,

R

giving commutative comonoid structures

7Y Wy 5

which interact well with the monoidal structure, and such that

= (much can be done without)




A basic example

One of the paradigmatic Markov categories is FinStoch, the category of
finite sets and stochastic matrices: a morphism f: X — Y is

(f(y|x))X€X,y€Y € RXXY

with

Flyl) 20, > flyl)=1.
y
Composition is the Chapman-Kolmogorov formula,

(gf)(zlx) = Zgz|y (y1x).

A morphism p: 1 — X is a probability distribution.

A general morphism X — Y has many names: Markov kernel,
probabilistic mapping, communication channel, ...



The monoidal structure implements stochastic independence,

(g ® f)(xy|ab) := g(x]a) f(y|b).

The copy maps are

1 if xy = x = x,

copyyx @ X — X x X, copy x (X1, x2|x) = .
0 otherwise.

The deletion maps are the unique morphisms X — 1.



> Works just the same with “probabilities” taking values in any
semiring R.

> Taking R to be the Boolean semiring B = {0, 1} with
1+1=1
results in the Kleisli category of the nonempty finite powerset monad.

= We get a Markov category for non-determinism.

> Measure-theoretic probability: Kleisli category of the Giry monad.



Outline

In the rest of this talk, | will sketch:

> How to develop (some) theorems of probability theory in terms of
Markov categories.

> This includes work in progress on the de Finetti theorem
characterizing permutation-invariant probability distributions.

> There is a vast landscape of Markov categories, going much beyond
probability theory.

We're just at the beginning!



Analogy with topos theory

> Every constructive piece of mathematics holds in every topos, but
there still are many toposes!

Similarly, every theorem of probability proven in terms of Markov
categories holds quite generally.

> There is a hierarchy of additional axioms of different strength.



Bold working hypothesis:
Theory of Markov categories
= General theory of information flow

2 Generalized probability theory and statistics.

Indeed, for example Bayesian networks can be defined in Markov
categories (Brendan Fong's 2013 MSc).

In other words, Markov categories are a general setting for talking about
cause and effect.



A first theoretical development: Bayesian inversion

Bayes' rule takes the form:

X \‘/ >‘< 1%
p(ylx) p(x|y)
p(yIx) p(x) = p(xly) p(y)

In any Markov category with conditionals, there is a sense in which the
map p(y|x) — p(x]y) is a dagger functor!



More generally:

Definition
C has conditionals if for f : A — X ® Y there is fix : X ® A — Y with

11
fix
XY
[ |
f = °
I f
A




Almost sure equality

Definition
letp: A= Xand f,g: X =Y.

f and g are equal p-almost surely, f =, g, if

> Intuition: f and g behave the same on all inputs produced by p.

> Other concepts (besides equality) also relativize with respect to
p-almost surely.



Determinism

Definition
In a Markov category, a morphism f : X — Y is deterministic if it
commutes with copying,

> Intuition: Applying f to copies of input = copying the output of f.

> The deterministic morphisms form a cartesian monoidal subcategory.



Conditional independence

Definition
In a Markov category, f : A— X ® Y displays the conditional
independence X L Y || A if

| | o o
f f f




Kleisli categories are Markov categories

Proposition
Let

> D be a category with finite products,

> P a commutative monad on D with P(1) = 1.

Then the Kleisli category KI(P) is a Markov category in the obvious way.

Examples:

> Kleisli category of the Giry monad, other related monads for
measure-theoretic probability.

> Kleisli category of the non-empty power set monad, which is (almost)
Rel.

The proposition still holds when D is merely a Markov category itself!



Markov categories as Kleisli categories

Definition
A Markov category C is representable if for every X € C there is PX € C
and a natural bijection

Caet(—, PX) = C(—, X).

Then P turns out to extend to a commutative monad on Cget, and C is its
Kleisli category!

The counit of the induced comonad is
sampy : PX — X,

the map that returns a random sample from a distribution.



Detour: random measures
> Suppose that | hand you a coin (which may be biased).

> How much would you bet on the outcome
heads, tails, tails

when the coin is flipped 3 times?

= Surely the same as you would bet on
tails, tails, heads.

> If o is the distribution of your belief on the coin’s bias, you would go
for odds better than

/p(heads) p(tails)? ju(dp).

So p is a random measure with distribution .



Classical de Finetti theorem

A sequence (xp)nen of random variables on a space X is exchangeable if
their distribution is invariant under finite permutations o,

]P’[Xl S 50(1), ..., Xp € Sa(n)]

= ]P’[XlEsl,...,X,,ESn].

Theorem

If (xn) is exchangeable, then there is a measure p on PX such that

Pl € Sty )50 € o] = /p(X1 € 51) -+ p(xn € Sn) u(dp)-

Idea: sequence of tosses of a coin with unknown biasl!



Synthetic de Finetti theorem

Assumption: C is an a.s. compatibly representable Markov category with
conditionals and countable Kolmogorov products.

Definition

f : A— XY is exchangeable if it is invariant under composing with finite
permutations.

Sampling N times gives a morphism PX — XY given by




Synthetic de Finetti theorem

Theorem

For every exchangeable f : A — XN there is g : A — PX such that

| |
\/ |samp|--.|samp|

f =




Structure of proof

Spreadability Markov Chain
Lemma Lemma
Shift invariance
of conditional
Exchangeable state
is conditionally iid
De Finetti
for states
Parametrization De Finetti
construction Theorem




Categories of comonoids

Proposition
Let C be any symmetric monoidal category. Then the category with:

> Commutative comonoids in C as objects,
> Counital maps as morphisms,

> The specified comultiplications as copy maps,

is a Markov category.

A good example is Vect,” for a field k:

> The comonoids correspond to commutative k-algebras of k-valued
random variables.

> We obtain algebraic probability theory with “random variable
transformers’ as morphisms (formal opposites of Markov kernels).



Diagram categories and ergodic theory

Proposition
Let D be any category and C a Markov category. The category in which

> Objects are functors D — Cget,

> Morphisms are natural transformations with components in C.

With the poset D = 7Z, we get a category of discrete-time stochastic
processes.

This generalizes an observation going back to (Lawvere, 1962).

We can also take D = BG for a group G, resulting in categories of
dynamical systems with deterministic dynamics but stochastic morphisms.



Hyperstructures: categorical algebra in Markov categories

A group G is a monoid G together with (=)' : G — G such that

This equation can be interpreted in any Markov category! (Together with
the bialgebra law.)



> More generally, one can consider models of any algebraic theory in any
Markov category.

> In Kleisli categories of probability-like monads, these are known as
hyperstructures.

> Peter Arndt's suggestion:

Develop categorical algebra for hyperstructures in terms of Markov
categories!



Summary

> Markov categories are an emerging formalism providing a general
theory of information theory.

> Many qualitative results of probability theory generalize to Markov
categories.

> These usually require additional axioms (of various degrees of
strength).

> There is a vast unexplored landscape of Markov categories in which
these results can be instantiated.

> This is similar to topos theory: a lot of mathematics can be developed
constructively and then instantiated in an unexpectedly large number
of contexts.



Some further directions

> Is there a “most convenient” Markov category C for measure-theoretic
probability?
Some desiderata:

> C has conditionals.

> C has Kolmogorov products.

v

C has supports.

> Cqet Is cartesian closed.

| don’t know of any non-cartesian Markov category with these
properties!

> Many results in probability theory are quantitative.

= Do we need enriched Markov categories?



The causality axiom

Definition
C is causal if

> Intuition: The choice between h; and hy in the “future” of g does
not influence the “past” of g.

> Not every Markov category is causal.



The positivity axiom
Definition

C is positive if whenever gf is deterministic for composable f and g, then
also

> Intuition: If a deterministic process has a random intermediate result,
then that result can be computed independently from the process.

> Not every Markov category is positive.

> Dario Stein: every causal Markov category is positive!



Definition
Let (X;)ic/ be a family of objects. The infinite tensor product
X/ = ®X,'
icl

is the cofiltered limit of the finite tensor products Xr := ;. Xi, if this
limit exists and is preserved by every — ® Y.

Definition
An infinite tensor product X; is a Kolmogorov product if the limit
projections 7g : X; — XF are deterministic.

> This additional condition fixes the comonoid structure on X|.



Theorem (Kolmogorov zero—one law)

Let X; be a Kolmogorov product of a family (X;);e;.

If
> p: A— X; makes the X; independent and identically distributed, and

> s: X; — T is such that
Xe T

O

A
displays Xg L T || A for every finite F C I,

then ps is deterministic.




The classical Hewitt—-Savage zero-one law

Theorem

Let (xn)nen be independent and identically distributed random variables,

and S any event depending only on the x, and invariant under finite
permutations.

Then P(S) € {0,1}.




The synthetic Hewitt—Savage zero-one law
Theorem
Let J be an infinite set and C a causal Markov category. Suppose that:
> The Kolmogorov power X®J := limgc  finite X©F exists.
> p: A— X® displays the conditional independence L;c; X;|| A.
> s: X? = T is deterministic.

> For every finite permutation o : J — J, permuting the factors
& X® - X® satisfies

op = p, SG = s.

Then sp is deterministic.

Proof is by string diagrams, but far from triviall



