Comparison of statistical experiments beyond the discrete case

Tobias Fritz

joint work with Tomáš Gonda, Paolo Perrone and Eigil Fjeldgren Rischel

November 2020

Or: Introduction to synthetic probability via Markov categories

Tobias Fritz

November 2020

References

Peter V. Golubtsov, Axiomatic description of categories of information converters. Problemy Peredachi Informatsii 35(3), 80-98 (1999). (And other similar papers by Golubtsov.)

- ▷ Kenta Cho and Bart Jacobs. Disintegration and Bayesian inversion via string diagrams. Math. Struct. Comp. Sci. 29, 938–971 (2019). arXiv:1709.00322.
- ▷ Tobias Fritz. A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics. Adv. Math. 370, 107239 (2020). arXiv:1908.07021
- ▷ Tobias Fritz and Eigil Fjeldgren Rischel, The zero-one laws of Kolmogorov and Hewitt-Savage in categorical probability. Compositionality 2, 3 (2020). arXiv:1912.02769.
- ▷ Evan Patterson. The algebra and machine representation of statistical models, PhD thesis. arXiv:2006.08945
- ▷ Tobias Fritz, Tomáš Gonda, Paolo Perrone, Eigil Fjeldgren Rischel, Representable Markov Categories and Comparison of Statistical Experiments in Categorical Probability, arXiv:2010.07416.

Teaser

Theorem (Generalized Blackwell-Sherman-Stein theorem) Let

- \triangleright X, Y and Θ be standard Borel spaces,
- $\triangleright \ (P_{\theta})_{\theta \in \Theta} \text{ and } (Q_{\theta})_{\theta \in \Theta} \text{ measurably indexed statistical models,}$
- \triangleright *m* a probability measure on Θ (prior).

Then the following are equivalent:

(a) There is a Markov kernel $c: X \rightarrow Y$ such that

 $Q_{ heta} = c(P_{ heta})$

for *m*-almost all θ .

(b) The standard measures \hat{f}_m and \hat{g}_m on $P\Theta$ satisfy the second-order dominance relation

$$\hat{f}_m \sqsubseteq \hat{g}_m.$$

- $\triangleright\,$ It generalizes the classical result in the discrete case.
- \triangleright This is the first result in probability and statistics which is:
 - ▷ proven "synthetically",
 - ▷ apparently new even within traditional measure-theoretic probability!
- $\triangleright\,$ Unrelated to existing measure-theoretic generalizations (as far as we know).

Theorem (Prior-independent Blackwell-Sherman-Stein theorem) Let

- \triangleright X, Y and Θ be standard Borel spaces,
- $\triangleright \ (P_{\theta})_{\theta \in \Theta} \text{ and } (Q_{\theta})_{\theta \in \Theta} \text{ measurably indexed statistical models.}$

Then the following are equivalent:

(a) There is a Markov kernel $c: X \times P\Theta \rightarrow Y$ such that

$$Q_{\theta} = c(P_{\theta}, m)$$

for *m*-almost every θ and every *m*.

(b) The standard measures \hat{f}_m and \hat{g}_m on $P\Theta$ satisfy the second-order dominance relation

$$\hat{f}_m \sqsubseteq \hat{g}_m.$$

for every prior $m \in P\Theta$, as witnessed by a measurably *m*-dependent dilation $P\Theta \to P\Theta$.

Both theorems are instances of the same abstract result!

Ideas

The central objects of probability theory are not probability distribution, but Markov kernels

which can be interpreted as

- ▷ communication channels,
- statistical models,
- ▷ or statistical experiments.

▷ Do not say what a Markov kernel is — rather, say how it behaves!

Suppose that we want to reason about **flow of information** in a medical trial. Then we seem to need diagrams like this:

 \rightarrow Medical condition has an influence on both trial compliance and on treatment outcome!

Ideas

- $\triangleright\,$ Processes can have any number of inputs and outputs.
- ▷ **Distributions** are special processes with no inputs.
- ▷ To describe information flow, have additional pieces of structure:
 - \triangleright copying information:

▷ deleting information:

A Markov category C is a symmetric monoidal category supplied with copying and deleting operations on every object,

A basic example

One of the paradigmatic Markov categories is **FinStoch**, the category of finite sets and **stochastic matrices**:

 \triangleright A morphism $f: X \rightarrow Y$ is

$$(f(y|x))_{x\in X,y\in Y}\in \mathbb{R}^{X\times Y}$$

with

$$f(y|x) \ge 0,$$
 $\sum_{y} f(y|x) = 1.$

▷ Composition is the Chapman-Kolmogorov formula,

$$(gf)(z|x) := \sum_{y} g(z|y) f(y|x).$$

 \triangleright A morphism $p: 1 \rightarrow X$ is a **probability distribution**.

- \triangleright A general morphism $X \rightarrow Y$ has many names: Markov kernel, probabilistic mapping, information transformer, ...
- > The monoidal structure implements stochastic independence,

$$(g \otimes f)(xy|ab) := g(x|a) f(y|b).$$

▷ The copy maps are

$$\operatorname{copy}_X : X \longrightarrow X \times X, \quad \operatorname{copy}_X(x_1, x_2 | x) = \begin{cases} 1 & \text{if } x_1 = x_2 = x, \\ 0 & \text{otherwise.} \end{cases}$$

 \triangleright The deletion maps are the unique morphisms $X \rightarrow 1$.

The Markov category **BorelStoch** is defined similarly, with standard Borel spaces instead of finite sets.

A first theoretical development: Bayesian inversion

Bayes' rule takes the form:

These exist (non-uniquely) in any Markov category with conditionals.

Bayesian inversion

Generally:

Definition

The **Bayesian inverse** of a process $f : X \to Y$ with respect to a distribution $m : I \to X$ is any $f^{\dagger} : Y \to X$ such that

Almost sure equality

 \triangleright Intuition: f and g behave the same on all inputs produced by p.

Other concepts (besides equality) also relativize with respect to *p*-almost surely.

Determinism

Definition

In a Markov category, a morphism $f : X \to Y$ is **deterministic** if it commutes with copying,

 \triangleright Intuition: Applying f to copies of input = copying the output of f.

> The deterministic morphisms form a cartesian monoidal subcategory.

Representability

> In a representable Markov category, there is a bijection morphisms

 $f: A \to X$

and deterministic morphisms

$$f^{\sharp}: A \to PX$$

where PX plays the role of the object of distributions on X.

 $\triangleright~$ Under this correspondence, the deterministic identity $PX \rightarrow PX$ corresponds to the sampling map

samp : $PX \rightarrow X$.

so that samp^{\sharp} = id_{*PX*}.

▷ Suppose that

$f:\Theta\to X$

is a statistical experiment, and $m: I \rightarrow \Theta$ a **prior** over hypotheses.

- ▷ The Bayesian inverse $f^{\dagger}: X \to \Theta$ computes the posterior from the experiment outcome.
- ▷ By definition

▷ The standard experiment is

It assigns to every hypothesis the resulting distribution over posteriors.

▷ The **standard measure** is

It is a distribution on $P\Theta$, namely the expected distribution over posteriors (with respect to the prior m).

Second-order stochastic dominance

Definition

Given a distribution $f: I \rightarrow P\Theta$, an *f*-dilation is a morphism

 $t: P\Theta \rightarrow P\Theta$

Idea:

t preserves the expected distribution of a distribution over distributions, at least f-almost surely.

Second-order stochastic dominance

Definition Given distributions $f, g : I \to P\Theta$, we say that g second-order dominates f, $f \sqsubseteq g$ if there is an f-dilation $t : P\Theta \to P\Theta$ such that f = tg.

This makes f "more spread out" than g.

Comparison of statstical experiments

Definition

Let $f : \Theta \to X$ and $g : \Theta \to Y$ be statistical experiments. Then f is more informative than g if there is $c : X \to Y$ such that

$$g = cf$$
.

Also consider the informativeness preorder up to almost sure equality with respect to prior m, where only

$$g =_{m-a.s.} cf$$

is needed.

The categorical Blackwell-Sherman-Stein theorem

Theorem

Let ${\bf C}$ be an a.s.-compatibly representable Markov category with conditionals.

Consider two morphisms $f : \Theta \to X$ and $g : \Theta \to Y$ in **C** and a prior $m : I \to \Theta$.

Then the following are equivalent:

(a) There exists a morphism $c: X \to Y$ such that

$$g =_{m-a.s.} cf.$$

(b) $\hat{f}_m \sqsubseteq \hat{g}_m$.

Theorems from beginning: follow upon instantiation on suitable $\ensuremath{\mathsf{C}}.$

A Markov category for information theory?

There are well-known analogies between probability and information theory:

- ▷ Conditional probability: $P(A|B) = \frac{P(A \cap B)}{P(B)}$.
- ▷ Conditional entropy: H(A|B) = H(AB) H(B).

Question

Is there a Markov category for information theory explaining these analogies?

Maybe like this:

- ▷ Objects are finite sets,
- \triangleright Morphisms $f: X \rightarrow Y$ are compatible families of stochastic maps

$$(f_n: X^{\times n} \to Y^{\times n})_{n \in \mathbb{N}}$$

modulo some suitable asymptotic equivalence as $n \to \infty$.

- \triangleright A statistical model on X is a morphism $p: A \rightarrow X$.
- \triangleright A **statistic** for *p* is a deterministic morphism $s: X \rightarrow T$.
- ▷ The statistic is **sufficient** if

displays
$$A \perp X \mid T$$
.

There is a version of the Fisher-Neyman factorization theorem.

Theorem Suppose that **C** is strictly positive.

A statistic $s : X \to T$ is sufficient for $p : A \to X$ if and only if there is $\alpha : T \to X$ with $\alpha sp = p$.

There are versions of other classical theorems of statistics.

Basu's theorem

A complete sufficient statistic for p is independent of any ancillary statistic.

Bahadur's theorem

If a minimal sufficient statistic exists, then a complete sufficient statistic is minimal sufficient.

Explaining these would first require stating the relevant additional definitions, for which I don't have time.

C is **positive** if whenever gf is deterministic for composable f and g, then also

- ▷ **Intuition:** If a deterministic process has a random intermediate result, then that result can be computed independently from the process.
- ▷ Not every Markov category is positive.

 $f : A \to X \otimes Y$ displays the conditional independence $X \perp Y || A$ if there are g and h such that

 \triangleright Intuition: The outputs X and Y can be produced independently.

Note the difference from the earlier definition of conditional independence!

Let $(X_i)_{i \in I}$ be a family of objects. The **infinite tensor product**

$$X_I := \bigotimes_{i \in I} X_i$$

is the cofiltered limit of the finite tensor products $X_F := \bigotimes_{i \in F} X_i$, if this limit exists and is preserved by every $- \otimes Y$.

Definition

An infinite tensor product X_I is a **Kolmogorov product** if the limit projections $\pi_F : X_I \to X_F$ are deterministic.

\triangleright This additional condition fixes the comonoid structure on X_I .

A piece of probability theory

One of the fundamental theorems of probability is the **law of large numbers**:

$$\mathsf{P}\left[\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}X_{i}=\mathbb{E}[X]\right] = 1. \tag{(*)}$$

I don't yet know how to state and prove this in terms of Markov categories. But we have proven a closely related classical result synthetically.

Hewitt-Savage zero-one law

Let $(X_i)_{i \in \mathbb{N}}$ be independent and identically distributed random variables, and A any event depending only on the X_i and invariant under finite permutations.

Then $P(A) \in \{0, 1\}$.

This implies that (*) is 0 or 1, but we don't know which!

Theorem (Kolmogorov zero–one law) Let X_i be a Kolmogorov product of a family $(X_i)_{i \in I}$.

 \triangleright $p: A \rightarrow X_I$ makes the X_i independent and identically distributed, and

 $\triangleright \ s: X_I \to T$ is such that

lf

displays $X_F \perp T \parallel A$ for every finite $F \subseteq I$,

then *sp* is deterministic.

- ▷ **Intuition:** The choice between h_1 and h_2 in the "future" of g does not influence the "past" of g.
- ▷ Not every Markov category is causal.

Theorem (Hewitt-Savage zero-one law)

Suppose that **C** is causal, *I* infinite and $X_I := \bigotimes_{i \in I} X$ a Kolmogorov product of the same X with itself.

lf

 $\triangleright p: A \rightarrow X_I$ makes the X_i independent and identically distributed, and

 \triangleright $s: X_I \rightarrow T$ is deterministic and invariant under finite permutations, then *sp* is deterministic.

Proof is by string diagrams, but far from obvious!

Example

If $\prod_{i \in I} X$ is an infinite product of the same topological space, Y a Hausdorff space and $f : \prod_i X \to Y$ continuous and invariant under finite permutations, then f is constant.

Definition C has conditionals if for $f : A \to X \otimes Y$ there is $f_{|X} : X \otimes A \to Y$ with $\begin{array}{c} X & Y \\ \downarrow & \downarrow \end{array}$

- $\triangleright\,$ If C has conditionals, then it is both strictly positive and causal.
- ▷ The positivity and causality axioms (partly?) eliminate the relevance of conditionals!