
Comparison of statistical experiments
beyond the discrete case

Tobias Fritz
joint work with Tomáš Gonda, Paolo Perrone and Eigil Fjeldgren Rischel

November 2020



Or: Introduction to synthetic probability
via Markov categories

Tobias Fritz

November 2020



References
. Peter V. Golubtsov,

Axiomatic description of categories of information converters. Problemy
Peredachi Informatsii 35(3), 80–98 (1999).
(And other similar papers by Golubtsov.)

. Kenta Cho and Bart Jacobs,
Disintegration and Bayesian inversion via string diagrams.
Math. Struct. Comp. Sci. 29, 938–971 (2019). arXiv:1709.00322.

. Tobias Fritz,
A synthetic approach to Markov kernels, conditional independence and
theorems on sufficient statistics. Adv. Math. 370, 107239 (2020).
arXiv:1908.07021.

. Tobias Fritz and Eigil Fjeldgren Rischel,
The zero-one laws of Kolmogorov and Hewitt–Savage in categorical probability.
Compositionality 2, 3 (2020). arXiv:1912.02769.

. Evan Patterson,
The algebra and machine representation of statistical models, PhD thesis.
arXiv:2006.08945.

. Tobias Fritz, Tomáš Gonda, Paolo Perrone, Eigil Fjeldgren Rischel,
Representable Markov Categories and Comparison of Statistical Experiments in
Categorical Probability, arXiv:2010.07416.

https://arxiv.org/abs/1709.00322
https://arxiv.org/abs/1908.07021
https://arxiv.org/abs/1912.02769
https://arxiv.org/abs/2006.08945
https://arxiv.org/abs/2010.07416


Teaser

Theorem (Generalized Blackwell-Sherman-Stein theorem)
Let
. X , Y and Θ be standard Borel spaces,
. (Pθ)θ∈Θ and (Qθ)θ∈Θ measurably indexed statistical models,
. m a probability measure on Θ (prior).

Then the following are equivalent:

(a) There is a Markov kernel c : X → Y such that

Qθ = c(Pθ)

for m-almost all θ.

(b) The standard measures f̂m and ĝm on PΘ satisfy the second-order
dominance relation

f̂m v ĝm.



Teaser

. It generalizes the classical result in the discrete case.

. This is the first result in probability and statistics which is:

. proven “synthetically”,

. apparently new even within traditional measure-theoretic probability!

. Unrelated to existing measure-theoretic generalizations (as far as we
know).



Theorem (Prior-independent Blackwell-Sherman-Stein theorem)
Let
. X , Y and Θ be standard Borel spaces,
. (Pθ)θ∈Θ and (Qθ)θ∈Θ measurably indexed statistical models.

Then the following are equivalent:

(a) There is a Markov kernel c : X × PΘ→ Y such that

Qθ = c(Pθ,m)

for m-almost every θ and every m.
(b) The standard measures f̂m and ĝm on PΘ satisfy the second-order

dominance relation
f̂m v ĝm.

for every prior m ∈ PΘ, as witnessed by a measurably m-dependent
dilation PΘ→ PΘ.

Both theorems are instances of the same abstract result!



Ideas

. The central objects of probability theory are not probability
distribution, but Markov kernels

process

output

input

which can be interpreted as

. communication channels,

. statistical models,

. or statistical experiments.

. Do not say what a Markov kernel is — rather, say how it behaves!



Suppose that we want to reason about flow of information in a medical
trial. Then we seem to need diagrams like this:

patient

medical
condition

compliance

treatment

outcome

→ Medical condition has an influence on both trial compliance and on
treatment outcome!



Ideas

. Processes can have any number of inputs and outputs.

. Distributions are special processes with no inputs.

. To describe information flow, have additional pieces of structure:

. copying information:

. deleting information:



Definition
A Markov category C is a symmetric monoidal category supplied with
copying and deleting operations on every object,

giving commutative comonoid structures

==
= =

which interact well with the monoidal structure, and such that

=f (do we really want this?)



A basic example

One of the paradigmatic Markov categories is FinStoch, the category of
finite sets and stochastic matrices:

. A morphism f : X → Y is

(f (y |x))x∈X ,y∈Y ∈ RX×Y

with
f (y |x) ≥ 0,

∑
y

f (y |x) = 1.

. Composition is the Chapman-Kolmogorov formula,

(gf )(z |x) :=
∑
y

g(z |y) f (y |x).

. A morphism p : 1→ X is a probability distribution.



. A general morphism X → Y has many names: Markov kernel,
probabilistic mapping, information transformer, . . .

. The monoidal structure implements stochastic independence,

(g ⊗ f )(xy |ab) := g(x |a) f (y |b).

. The copy maps are

copyX : X −→ X × X , copyX (x1, x2|x) =

{
1 if x1 = x2 = x ,

0 otherwise.

. The deletion maps are the unique morphisms X → 1.

The Markov category BorelStoch is defined similarly, with standard Borel
spaces instead of finite sets.



A first theoretical development: Bayesian inversion

Bayes’ rule takes the form:

p(x) p(y)

=
p(y |x) p(x |y)

X Y X Y

p(y |x) p(x) = p(x |y) p(y)

These exist (non-uniquely) in any Markov category with conditionals.



Bayesian inversion

Generally:

Definition
The Bayesian inverse of a process f : X → Y with respect to a
distribution m : I → X is any f † : Y → X such that

m

m

=
f f †

X Y X Y

f



Almost sure equality

Definition
Let p : A→ X and f , g : X → Y .

f and g are equal p-almost surely, f =p-a.s. g , if

p

f

=
p

g

. Intuition: f and g behave the same on all inputs produced by p.

. Other concepts (besides equality) also relativize with respect to
p-almost surely.



Determinism

Definition
In a Markov category, a morphism f : X → Y is deterministic if it
commutes with copying,

f f
=

f

. Intuition: Applying f to copies of input = copying the output of f .

. The deterministic morphisms form a cartesian monoidal subcategory.



Representability

. In a representable Markov category, there is a bijection morphisms

f : A→ X

and deterministic morphisms

f ] : A→ PX

where PX plays the role of the object of distributions on X .

. Under this correspondence, the deterministic identity PX → PX
corresponds to the sampling map

samp : PX → X .

so that samp] = idPX .



. Suppose that
f : Θ→ X

is a statistical experiment, and m : I → Θ a prior over hypotheses.

. The Bayesian inverse f † : X → Θ computes the posterior from the
experiment outcome.

. By definition

m

m

=
f f †

Θ X Θ X

f



. The standard experiment is

:=f̂

PΘ

Θ

(f †)]

f

PΘ

Θ

It assigns to every hypothesis the resulting distribution over posteriors.

. The standard measure is

:=
f̂m

f̂

m

PΘ PΘ

It is a distribution on PΘ, namely the expected distribution over
posteriors (with respect to the prior m).



Second-order stochastic dominance

Definition
Given a distribution f : I → PΘ, an f -dilation is a morphism

t : PΘ→ PΘ

such that

=

samp
samp

f f

t

XPX

Idea:

t preserves the expected distribution of a distribution over distributions, at
least f -almost surely.



Second-order stochastic dominance

Definition
Given distributions f , g : I → PΘ, we say that g second-order dominates f ,

f v g

if there is an f -dilation t : PΘ→ PΘ such that

f = tg .

This makes f “more spread out” than g .



Comparison of statstical experiments

Definition
Let f : Θ→ X and g : Θ→ Y be statistical experiments.
Then f is more informative than g if there is c : X → Y such that

g = cf .

Also consider the informativeness preorder up to almost sure equality with
respect to prior m, where only

g =m-a.s. cf

is needed.



The categorical Blackwell-Sherman-Stein theorem

Theorem
Let C be an a.s.-compatibly representable Markov category with
conditionals.

Consider two morphisms f : Θ→ X and g : Θ→ Y in C and a prior
m : I → Θ.

Then the following are equivalent:

(a) There exists a morphism c : X → Y such that

g =m-a.s. cf .

(b) f̂m v ĝm.

Theorems from beginning: follow upon instantiation on suitable C.
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A Markov category for information theory?
There are well-known analogies between probability and information theory:

. Conditional probability: P(A|B) = P(A∩B)
P(B) .

. Conditional entropy: H(A|B) = H(AB)− H(B).

Question
Is there a Markov category for information theory explaining these
analogies?

Maybe like this:

. Objects are finite sets,

. Morphisms f : X → Y are compatible families of stochastic maps

(fn : X×n → Y×n)n∈N

modulo some suitable asymptotic equivalence as n→∞.



Definition

. A statistical model on X is a morphism p : A→ X .

. A statistic for p is a deterministic morphism s : X → T .

. The statistic is sufficient if

p

s

XT

A

displays A ⊥ X | T .



There is a version of the Fisher–Neyman factorization theorem.

Theorem
Suppose that C is strictly positive.

A statistic s : X → T is sufficient for p : A→ X if and only if there is
α : T → X with αsp = p.



There are versions of other classical theorems of statistics.

Basu’s theorem
A complete sufficient statistic for p is independent of any ancillary statistic.

Bahadur’s theorem
If a minimal sufficient statistic exists, then a complete sufficient statistic is
minimal sufficient.

Explaining these would first require stating the relevant additional
definitions, for which I don’t have time.



Definition

C is positive if whenever gf is deterministic for composable f and g , then
also

g

f

g

=

f

f

. Intuition: If a deterministic process has a random intermediate result,
then that result can be computed independently from the process.

. Not every Markov category is positive.



Definition
f : A→ X ⊗ Y displays the conditional independence X ⊥ Y ||A if
there are g and h such that

=f
g h

A

X Y X Y

A

. Intuition: The outputs X and Y can be produced independently.

. Note the difference from the earlier definition of conditional
independence!



Definition
Let (Xi )i∈I be a family of objects. The infinite tensor product

XI :=
⊗
i∈I

Xi

is the cofiltered limit of the finite tensor products XF :=
⊗

i∈F Xi , if this
limit exists and is preserved by every −⊗ Y .

Definition
An infinite tensor product XI is a Kolmogorov product if the limit
projections πF : XI → XF are deterministic.

. This additional condition fixes the comonoid structure on XI .



A piece of probability theory

One of the fundamental theorems of probability is the law of large
numbers:

P

[
lim
n→∞

1
n

n∑
i=1

Xi = E[X ]

]
= 1. (∗)

I don’t yet know how to state and prove this in terms of Markov categories.
But we have proven a closely related classical result synthetically.

Hewitt–Savage zero-one law
Let (Xi )i∈N be independent and identically distributed random variables,
and A any event depending only on the Xi and invariant under finite
permutations.

Then P(A) ∈ {0, 1}.

This implies that (∗) is 0 or 1, but we don’t know which!



Theorem (Kolmogorov zero–one law)
Let XI be a Kolmogorov product of a family (Xi )i∈I .

If
. p : A→ XI makes the Xi independent and identically distributed, and

. s : XI → T is such that

πF

p

s

A

XF T

displays XF ⊥ T ||A for every finite F ⊆ I ,

then sp is deterministic.



Definition
C is causal if

f

h1

=g

f

h2

g implies

f

h1

=g

f

h2

g

. Intuition: The choice between h1 and h2 in the “future” of g does
not influence the “past” of g .

. Not every Markov category is causal.



Theorem (Hewitt–Savage zero–one law)
Suppose that C is causal, I infinite and XI :=

⊗
i∈I X a Kolmogorov

product of the same X with itself.

If
. p : A→ XI makes the Xi independent and identically distributed, and

. s : XI → T is deterministic and invariant under finite permutations,

then sp is deterministic.

Proof is by string diagrams, but far from obvious!

Example
If
∏

i∈I X is an infinite product of the same topological space, Y a
Hausdorff space and f :

∏
i X → Y continuous and invariant under finite

permutations, then f is constant.



Definition
C has conditionals if for f : A→ X ⊗ Y there is f|X : X ⊗ A→ Y with

X

f|X

=f

f
A

X Y

Y

A

. If C has conditionals, then it is both strictly positive and causal.

. The positivity and causality axioms (partly?) eliminate the relevance
of conditionals!


