Comparison of statistical experiments
beyond the discrete case

Tobias Fritz

joint work with Tomas Gonda, Paolo Perrone and Eigil Fjeldgren Rischel

November 2020



Or: Introduction to synthetic probability
via Markov categories

Tobias Fritz

November 2020



References

>

Peter V. Golubtsov,
Axiomatic description of categories of information converters. Problemy

Peredachi Informatsii 35(3), 80-98 (1999).
(And other similar papers by Golubtsov.)

Kenta Cho and Bart Jacobs,
Disintegration and Bayesnan inversion via string diagrams.

Math. Struct. Comp. Sci. 29, 938-971 (2019). arXiv:1709.00322.

Tobias Fritz, . )
A synthetic approach to Markov kernels, conditional independence and

theorems on sufficient statistics. Adv. Math. 370, 107239 (2020).
arXiv:1908.07021.

Tobias Fritz and Eigil Fjeldgren Rischel,
The zero-one laws of Kolmogorov and Hewitt—Savage in categorical probability.
Compositionality 2, 3 (2020). arXiv:1912.02769.

Evan Patterson,
The algebra and machine representation of statistical models, PhD thesis.
arXiv:2006.08945.

Tobias Fritz, Tomas Gonda, Paolo Perrone, Eigil Fjeldgren Rischel,
Representable Markov Categories and Comparison of Statistical Experiments in
Categorical Probability, arXiv:2010.07416.


https://arxiv.org/abs/1709.00322
https://arxiv.org/abs/1908.07021
https://arxiv.org/abs/1912.02769
https://arxiv.org/abs/2006.08945
https://arxiv.org/abs/2010.07416

Teaser

Theorem (Generalized Blackwell-Sherman-Stein theorem)
Let

> X, Y and © be standard Borel spaces,

> (Pg)oco and (Qp)osco measurably indexed statistical models,
> m a probability measure on © (prior).

Then the following are equivalent:

(a) There is a Markov kernel ¢ : X — Y such that

Qo = c(Pp)
for m-almost all 8.

(b) The standard measures f,, and &, on PO satisfy the second-order
dominance relation

~

fm & &m-




Teaser

> It generalizes the classical result in the discrete case.

> This is the first result in probability and statistics which is:

> proven “synthetically”,

> apparently new even within traditional measure-theoretic probability!

> Unrelated to existing measure-theoretic generalizations (as far as we
know).



Theorem (Prior-independent Blackwell-Sherman-Stein theorem)
Let

> X, Y and © be standard Borel spaces,

> (Pp)oco and (Qp)gco measurably indexed statistical models.

Then the following are equivalent:

(a) There is a Markov kernel ¢ : X x PO — Y such that
Q@ — C(P97 m)

for m-almost every 6 and every m.

(b) The standard measures £ and &m on PO satisfy the second-order
dominance relation

A~

fm E gm-

for every prior m € PO, as witnessed by a measurably m-dependent
dilation P© — PO.

Both theorems are instances of the same abstract result!



|deas

> The central objects of probability theory are not probability
distribution, but Markov kernels

output

process

input

which can be interpreted as

> communication channels,
> statistical models,

> or statistical experiments.

> Do not say what a Markov kernel is — rather, say how it behaves!



Suppose that we want to reason about flow of information in a medical
trial. Then we seem to need diagrams like this:

outcome

compliance

medical
condition

— Medical condition has an influence on both trial compliance and on
treatment outcome!



|deas

> Processes can have any number of inputs and outputs.

> Distributions are special processes with no inputs.

> To describe information flow, have additional pieces of structure:

> copying information:

> deleting information:



Definition
A Markov category C is a symmetric monoidal category supplied with
copying and deleting operations on every object,

voT

giving commutative comonoid structures

7 W 5y

which interact well with the monoidal structure, and such that

= (do we really want this?)




A basic example

One of the paradigmatic Markov categories is FinStoch, the category of
finite sets and stochastic matrices:

> A morphism f : X — Y'is

(f(Y‘X))xeX,er € RXXY

with

f(y|x) >0, Z f(y|x) = 1.

> Composition is the Chapman-Kolmogorov formula,

(gf)(z]x) : ZgZ\y (y[x)-

> A morphism p: 1 — X is a probability distribution.



> A general morphism X — Y has many names: Markov kernel,
probabilistic mapping, information transformer, . ..

> The monoidal structure implements stochastic independence,
(g ® f)(xy|ab) := g(x|a) f(y|b).
> The copy maps are

1 if xy = x = x,

copyyx : X — X x X, copy x (x1, x2|x) = )
0 otherwise.

> The deletion maps are the unique morphisms X — 1.

The Markov category BorelStoch is defined similarly, with standard Borel
spaces instead of finite sets.



A first theoretical development: Bayesian inversion

Bayes’ rule takes the form:

X »‘/ >‘< %
p(y|x) p(x|y)
p(y|x) p(x) = p(xly) p(y)

These exist (non-uniquely) in any Markov category with conditionals.



Bayesian inversion

Generally:

Definition
The Bayesian inverse of a process f : X — Y with respect to a
distribution m: | — X is any ff : Y — X such that

X Y




Almost sure equality

Definition
letp: A= Xand f,g: X =Y.

f and g are equal p-almost surely, f =, . g, if

> Intuition: f and g behave the same on all inputs produced by p.

> Other concepts (besides equality) also relativize with respect to
p-almost surely.



Determinism

Definition
In a Markov category, a morphism f : X — Y is deterministic if it
commutes with copying,

> Intuition: Applying f to copies of input = copying the output of f.

> The deterministic morphisms form a cartesian monoidal subcategory.



Representability

> In a representable Markov category, there is a bijection morphisms
f:A—>X
and deterministic morphisms
ffr A= PX

where PX plays the role of the object of distributions on X.

> Under this correspondence, the deterministic identity PX — PX
corresponds to the sampling map

samp : PX — X.

so that samp? = idpx.



> Suppose that
f:0—-X

is a statistical experiment, and m : | — © a prior over hypotheses.

> The Bayesian inverse fT : X — © computes the posterior from the
experiment outcome.

> By definition




> The standard experiment is

PO P‘@
(f1)"
© ©

It assigns to every hypothesis the resulting distribution over posteriors.
> The standard measure is

PO

It is a distribution on PO, namely the expected distribution over
posteriors (with respect to the prior m).



Second-order stochastic dominance

Definition
Given a distribution f : | — P©, an f-dilation is a morphism

t: PO — PO
such that
PX X
|dea:

t preserves the expected distribution of a distribution over distributions, at
least f-almost surely.



Second-order stochastic dominance

Definition
Given distributions f, g : | — P©, we say that g second-order dominates f,

fCg
if there is an f-dilation t ;: P© — P®© such that

f=tg.

This makes f “more spread out” than g.




Comparison of statstical experiments

Definition
Let f: © — X and g : © — Y be statistical experiments.
Then f is more informative than g if there is ¢ : X — Y such that

g = cf.

Also consider the informativeness preorder up to almost sure equality with
respect to prior m, where only

g =m-as. cf

is needed.



The categorical Blackwell-Sherman-Stein theorem

Theorem

Let C be an a.s.-compatibly representable Markov category with
conditionals.

Consider two morphisms f : © — X and g : © — Y in C and a prior
m: |l — ©.

Then the following are equivalent:
(a) There exists a morphism ¢ : X — Y such that

g —m-as. cf.

(b) fm C &m.

Theorems from beginning: follow upon instantiation on suitable C.



T he




A Markov category for information theory?

There are well-known analogies between probability and information theory:

> Conditional probability: P(A|B) = ch(\r;l)g)'

> Conditional entropy: H(A|B) = H(AB) — H(B).

Question

Is there a Markov category for information theory explaining these
analogies?

Maybe like this:
> Objects are finite sets,

> Morphisms f : X — Y are compatible families of stochastic maps
(fn . Xxn — Yxn)neN

modulo some suitable asymptotic equivalence as n — co.



Definition

> A statistical model on X is a morphism p: A — X.
> A statistic for p is a deterministic morphism s : X — T.

> The statistic is sufficient if

]

displays A L X | T.




There is a version of the Fisher—-Neyman factorization theorem.

Theorem
Suppose that C is strictly positive.

A statistic s : X — T is sufficient for p : A — X if and only if there is
a: T — X with asp = p.




There are versions of other classical theorems of statistics.

Basu's theorem

A complete sufficient statistic for p is independent of any ancillary statistic.

Bahadur's theorem

If a minimal sufficient statistic exists, then a complete sufficient statistic is
minimal sufficient.

Explaining these would first require stating the relevant additional
definitions, for which | don't have time.




Definition

C is positive if whenever gf is deterministic for composable f and g, then
also

> Intuition: If a deterministic process has a random intermediate result,
then that result can be computed independently from the process.

> Not every Markov category is positive.



Definition
f:A— X® Y displays the conditional independence X L Y || A if
there are g and h such that

XY Y

X
. B[

> Intuition: The outputs X and Y can be produced independently.

> Note the difference from the earlier definition of conditional
independence!



Definition
Let (X;)ic/ be a family of objects. The infinite tensor product
X/ = ®X,'
icl

is the cofiltered limit of the finite tensor products Xr := ;¢ Xi, if this
limit exists and is preserved by every — ®@ Y.

Definition
An infinite tensor product X; is a Kolmogorov product if the limit
projections g : X; — Xfg are deterministic.

> This additional condition fixes the comonoid structure on X|.



A piece of probability theory

One of the fundamental theorems of probability is the law of large
numbers:

P[ lim 1Zn:x,-zﬂ-z[)q = 1. (%)
i=1

n—oo N

| don't yet know how to state and prove this in terms of Markov categories.
But we have proven a closely related classical result synthetically.

Hewitt—Savage zero-one law

Let (Xj)ien be independent and identically distributed random variables,
and A any event depending only on the X; and invariant under finite
permutations.

Then P(A) € {0,1}.

This implies that (*) is 0 or 1, but we don't know which!



Theorem (Kolmogorov zero—one law)

Let X; be a Kolmogorov product of a family (X;);e;.

If
> p: A— X; makes the X; independent and identically distributed, and

> s: X; — T is such that

displays Xg L T || A for every finite F C I,

then sp is deterministic.




Definition
C is causal if

implies E = E

> Intuition: The choice between hy; and hy in the “future” of g does
not influence the “past” of g.

> Not every Markov category is causal.



Theorem (Hewitt-Savage zero—one law)
Suppose that C is causal, / infinite and X := @);, X a Kolmogorov
product of the same X with itself.
If
> p: A— X; makes the X; independent and identically distributed, and
> s: X; — T is deterministic and invariant under finite permutations,

then sp is deterministic.

Proof is by string diagrams, but far from obvious!

Example

If [T;c; X is an infinite product of the same topological space, Y a
Hausdorff space and f : [[; X — Y continuous and invariant under finite
permutations, then f is constant.




Definition
C has conditionals if for f : A= X ® Y there is fix : X ® A — Y with

(I
fix
1Y
f — °
| f
A
A

> If C has conditionals, then it is both strictly positive and causal.

> The positivity and causality axioms (partly?) eliminate the relevance
of conditionals!



