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Many of us like to reason about processes in terms of string diagrams:

process

output

input



We can compose processes into networks:

flour butter sugar

mix

dough

bake

apple pie

slice

peel

slice

peel

apple apple



Suppose that we want to reason about flow of information in a medical
trial. Then we seem to need diagrams like this:

patient

medical
condition

compliance

treatment

outcome

→ Medical condition has an influence on both trial compliance and on
treatment outcome!



Hence a theory of information flow needs additional pieces of structure:

. copying information:

. deleting information:



Definition
A Markov category C is a symmetric monoidal category supplied with
copying and deleting operations on every object,

giving commutative comonoid structures

==
= =

which interact well with the monoidal structure, and such that

=f (do we really want this?)



A basic example

One of the paradigmatic Markov categories is FinStoch, the category of
finite sets and stochastic matrices: a morphism f : X → Y is

(f (y |x))x∈X ,y∈Y ∈ RX×Y

with
f (y |x) ≥ 0,

∑
y

f (y |x) = 1.

Composition is the Chapman-Kolmogorov formula,

(gf )(z |x) :=
∑
y

g(z |y) f (y |x).

A morphism p : 1→ X is a probability distribution.

A general morphism X → Y has many names: Markov kernel,
probabilistic mapping, communication channel, . . .



The monoidal structure implements stochastic independence,

(g ⊗ f )(xy |ab) := g(x |a) f (y |b).

The copy maps are

copyX : X −→ X × X , copyX (x1, x2|x) =

{
1 if x1 = x2 = x ,

0 otherwise.

The deletion maps are the unique morphisms X → 1.



Outline

In the rest of this talk, I will sketch:

. How to develop (some) theorems of probability theory in terms of
Markov categories. (In some cases, turning theorems into definitions.)

. There is a vast landscape of Markov categories, going much beyond
probability theory.

In both respects, we’re just at the beginning!

Analogy with topos theory: every constructive piece of mathematics
holds in every topos, but there still are many toposes!

Also as in topos theory: there is a hierarchy of additional axioms of
different strength.



Bold working hypothesis:

Theory of Markov categories

∼= General theory of information flow

∼= Generalized probability theory and statistics.

Indeed, for example Bayesian networks can be defined in Markov
categories (Brendan Fong’s MSc).

In other words, Markov categories are a general setting for talking about
cause and effect.

⇒ Somebody should use this to generalize causal inference!



A first theoretical development: Bayesian inversion

Bayes’ rule takes the form:

p(x) p(y)

=
p(y |x) p(x |y)

X Y X Y

p(y |x) p(x) = p(x |y) p(y)

In any Markov category with conditionals, there is a sense in which the
map p(y |x) 7→ p(x |y) is a dagger functor!



Almost sure equality

Definition
Let p : A→ X and f , g : X → Y .

f and g are equal p-almost surely, f =p-a.s. g , if

p

f

=
p

g

. Intuition: f and g behave the same on all inputs produced by p.

. Other concepts (besides equality) also relativize with respect to
p-almost surely.



Determinism

Definition
In a Markov category, a morphism f : X → Y is deterministic if it
commutes with copying,

f f
=

f

. Intuition: Applying f to copies of input = copying the output of f .

. The deterministic morphisms form a cartesian monoidal subcategory.



Conditional independence

Definition
In a Markov category, f : A→ X ⊗ Y displays the conditional
independence X ⊥ Y ‖A if

=f f f



A piece of probability theory

One of the fundamental theorems of probability is the law of large
numbers:

P

[
lim
n→∞

1
n

n∑
i=1

Xi = E[X ]

]
= 1. (∗)

I don’t yet know how to state and prove this in terms of Markov categories.
But we have proven a closely related classical result synthetically.

Hewitt–Savage zero-one law
Let (Xi )i∈N be independent and identically distributed random variables,
and A any event depending only on the Xi and invariant under finite
permutations.

Then P(A) ∈ {0, 1}.

This implies that (∗) is 0 or 1, but we don’t know which!



The synthetic Hewitt–Savage zero-one law

Theorem
Let J be an infinite set and C a causal Markov category. Suppose that:

. The Kolmogorov power X⊗J := limF⊆J finite X
⊗F exists.

. p : A→ X⊗J displays the conditional independence ⊥i∈J Xi ‖A.

. s : X J → T is deterministic.

. For every finite permutation σ : J → J, permuting the factors
σ̃ : X⊗J → X⊗J satisfies

σ̃p = p, sσ̃ = s.

Then sp is deterministic.

Proof is by string diagrams, but far from trivial!



Kleisli categories are Markov categories

Proposition
Let

. C be a category with finite products,

. P a commutative monad on C with P(1) ∼= 1.

Then the Kleisli category Kl(P) is a Markov category in the obvious way.

Examples:

. The Kleisli category of the Giry monad is a Markov category.

. Kleisli categories of other monads that capture measure-theoretic
probability.

. The Kleisli category of the non-empty power set monad, which is
(almost) Rel.

The proposition still holds when C is merely a Markov category itself!



Categories of comonoids

Proposition
Let C be any symmetric monoidal category. Then the category with:

. Commutative comonoids in C as objects,

. Counital maps as morphisms,

. The specified comultiplications as copy maps,

is a Markov category.

A good example is Vectopk for a field k :

. The comonoids correspond to commutative k-algebras of k-valued
random variables.

. We obtain algebraic probability theory with “random variable
transformers” as morphisms (formal opposites of Markov kernels).



Diagram categories

Proposition
Let D be any category and C a Markov category. The category in which

. Objects are functors D→ Cdet,

. Morphisms are natural transformations with components in C.

With the poset D = Z, we get a category of discrete-time stochastic
processes.

This generalizes an observation going all the way back to (Lawvere, 1962)!

We can also take D = BG for a group G , resulting in categories of
dynamical systems with deterministic dynamics but stochastic morphisms.



A Markov category for information theory?
There are well-known analogies between probability and information theory:

. Conditional probability: P(A|B) = P(A∩B)
P(B) .

. Conditional entropy: H(A|B) = H(AB)− H(B).

Question
Is there a Markov category for information theory explaining these
analogies?

Maybe like this:

. Objects are finite sets,

. Morphisms f : X → Y are compatible families of stochastic maps

(fn : X×n → Y×n)n∈N

modulo some suitable asymptotic equivalence as n→∞.



Hyperstructures: categorical algebra in Markov categories

A group G is a monoid G together with (−)−1 : G → G such that

(−)−1 = (−)−1=

This equation can be interpreted in any Markov category! (Together with
the bialgebra law.)



More generally, one can consider models of any algebraic theory in any
Markov category.

In Kleisli categories of probability-like monads, these are known as
hyperstructures.

⇒ Peter Arndt’s suggestion: Develop categorical algebra for
hyperstructures!



Summary

. Markov categories are an emerging formalism providing a general
theory of information theory.

. Many qualitative results of probability theory generalize to Markov
categories.

. These usually require additional axioms (of various degrees of
strength).

. There is a vast unexplored landscape of Markov categories in which
these results can be instantiated.

. This is similar to topos theory: a lot of mathematics can be developed
constructively and then instantiated in an unexpectedly large number
of contexts.



Some further directions

. Is there a “most convenient” Markov category C for measure-theoretic
probability?

Some desiderata:

. C has conditionals.

. C has Kolmogorov products.

. C has supports.

. Cdet is cartesian closed.

I don’t know of any non-cartesian Markov category with these
properties!

. Many results in probability theory are quantitative.

⇒ We need enriched Markov categories!


