sketch of pieces of

A synthetic introduction to probability and statistics

Tobias Fritz

November 2019

I will give a very short introduction to the mathematical foundations of probability and statistics.

This will be based on measure theory, as usual.

I will give a very short introduction to the mathematical foundations of probability and statistics.

CAtegory theory This will be based on measure theory, as usual.

 \Rightarrow An unconventional introduction!

References

▷ Tobias Fritz,

A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics, arXiv:1908.07021.

- Tobias Fritz and Eigil Fjeldgren Rischel,
 The zero-one laws of Kolmogorov and Hewitt-Savage in categorical probability, in preparation.
- ▷ Peter V. Golubtsov,

Axiomatic description of categories of information converters, Problemy Peredachi Informatsii, 35(3):80–98 (1999). (And other similar papers by Golubtsov.)

▷ Kenta Cho and Bart Jacobs,

Disintegration and Bayesian inversion via string diagrams, Math. Struct. Comp. Sci. 29:938–971 (2019). arXiv:1709.00322. Probability theory is about *processes*

which can be composed in series and in parallel.

Intuition: process = function with random output.

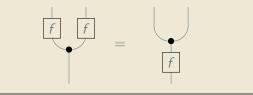
A probability distribution is a process with no input, like this:

{heads, tails} fair coin

A **Markov category** C is a symmetric monoidal category with **copying** and **deleting** operations on every object,

which interact well with the monoidal structure, and such that

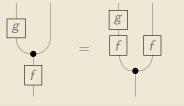
A morphism $f: X \rightarrow Y$ is **deterministic** if it commutes with copying,



 \triangleright Intuition: Applying f to copies of input = copying the output of f.

▷ The deterministic morphisms form a cartesian monoidal subcategory.

C is **positive** if whenever gf is deterministic for composable f and g, then also



- ▷ **Intuition:** If a deterministic process has a random intermediate result, then that result can be computed independently from the process.
- ▷ Not every Markov category is positive.

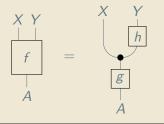
Let $p: A \rightarrow X$ and $f, g: X \rightarrow Y$.

f and g are equal p-almost surely, $f =_{p-a.s.} g$, if

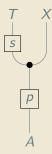
 \triangleright Intuition: f and g behave the same on all inputs produced by p.

- Other concepts (besides equality) also relativize with respect to p-almost surely.
- ▷ In particular, C is strictly positive if it satisfies a relativized positivity axiom.

 $f : A \to X \otimes Y$ displays the conditional independence $A \perp Y \mid X$ if there are g and h such that



- \triangleright A statistical model on X is a morphism $p: A \rightarrow X$.
- \triangleright A **statistic** for *p* is a deterministic morphism $s: X \rightarrow T$.
- ▷ The statistic is **sufficient** if



displays
$$A \perp X \mid T$$
.

There is a version of the Fisher-Neyman factorization theorem.

Theorem Suppose that C is strictly positive.

A statistic $s : X \to T$ is sufficient for $p : A \to X$ if and only if there is $\alpha : T \to X$ with $\alpha sp = p$.

There are versions of other classical theorems of statistics.

Basu's theorem

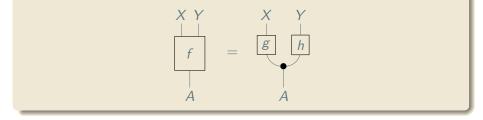
A complete sufficient statistic for p is independent of any ancillary statistic.

Bahadur's theorem

If a minimal sufficient statistic exists, then a complete sufficient statistic is minimal sufficient.

Explaining these would first require stating the relevant additional definitions, for which I don't have time.

 $f : A \to X \otimes Y$ displays the conditional independence $X \perp Y || A$ if there are g and h such that



 \triangleright Intuition: The outputs X and Y can be produced independently.

Note the difference from the earlier definition of conditional independence!

Let $(X_i)_{i \in I}$ be a family of objects. The **infinite tensor product**

$$X_I := \bigotimes_{i \in I} X_i$$

is the cofiltered limit of the finite tensor products $X_F := \bigotimes_{i \in F} X_i$, if this limit exists and is preserved by every $- \otimes Y$.

Definition

An infinite tensor product X_I is a **Kolmogorov product** if the limit projections $\pi_F : X_I \to X_F$ are deterministic.

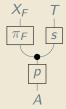
\triangleright This additional condition fixes the comonoid structure on X_I .

Theorem (Kolmogorov zero–one law) Let X_i be a Kolmogorov product of a family $(X_i)_{i \in I}$.

 \triangleright $p: A \rightarrow X_I$ makes the X_i independent and identically distributed, and

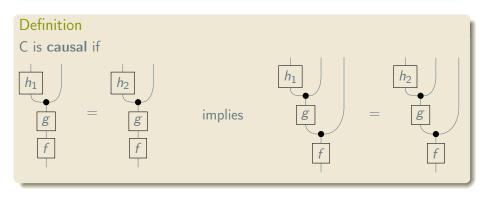
 $\triangleright \ s: X_I \to T$ is such that

lf



displays $X_F \perp T \parallel A$ for every finite $F \subseteq I$,

then *ps* is deterministic.



- ▷ **Intuition:** The choice between h_1 and h_2 in the "future" of g does not influence the "past" of g.
- ▷ Not every Markov category is causal.

Theorem (Hewitt-Savage zero-one law)

Suppose that C is causal, I infinite and $X_I := \bigotimes_{i \in I} X$ a Kolmogorov product of the same X with itself.

lf

▷ $p: A \rightarrow X_I$ makes the X_i independent and identically distributed, and ▷ $s: X_I \rightarrow T$ is deterministic and invariant under finite permutations, then *ps* is deterministic.

Example

If $\prod_{i \in I} X$ is an infinite product of the same topological space, Y a Hausdorff space and $f : \prod_i X \to Y$ continuous and invariant under finite permutations, then f is constant.

Please join us for

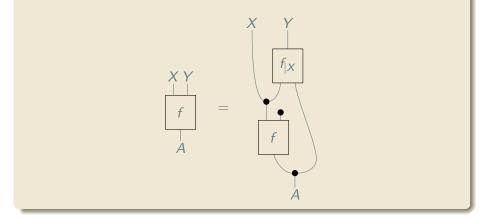
"Categorical Probability and Statistics"

at 75th Anniversay Summer Meeting, Canadian Mathematical Society,

5-8 June 2020, University of Ottawa.

Organizers: Rory Lucyshyn-Wright and myself.

C has conditionals if for $f : A \to X \otimes Y$ there is $f_{|X} : X \otimes A \to Y$ with



- \triangleright If C has conditionals, then it is both strictly positive and causal.
- ▷ The positivity and causality axioms (partly?) eliminate the relevance of conditionals!