What is a probability monad?

Paolo Perrone

Massachusetts Institute of Technology (MIT)

Categorical Probability 2020
Tutorial video
Monads as extensions

Definition:
Let C be a category. A monad on C consists of:
- A functor $T : C \to C$;
- A natural transformation $\eta : \text{id}_C \Rightarrow T$ called unit;
- A natural transformation $\mu : TT \Rightarrow T$ called composition;

such that the following diagrams commute:
Monads as extensions

Idea:
A monad is like a consistent way of extending spaces to include generalized elements and generalized functions of a specific kind.
Monads as extensions

Idea:
A monad is like a consistent way of extending spaces to include generalized elements and generalized functions of a specific kind.

A functor $T : C \to C$ consists of:
Monads as extensions

Idea:
A monad is like a consistent way of extending spaces to include generalized elements and generalized functions of a specific kind.
A functor $T : C \to C$ consists of:
1. To each space X, an “extended” space TX.
Monads as extensions

Idea:
A monad is like a consistent way of extending spaces to include generalized elements and generalized functions of a specific kind.

A functor $T : C \rightarrow C$ consists of:

1. To each space X, an “extended” space TX.
2. Given $f : X \rightarrow Y$, an “extension” $Tf : TX \rightarrow TY$.
Monads as extensions

Idea:
A monad is like a consistent way of extending spaces to include generalized elements and generalized functions of a specific kind.

A functor $T : C \rightarrow C$ consists of:
1. To each space X, an “extended” space TX.
2. Given $f : X \rightarrow Y$, an “extension” $Tf : TX \rightarrow TY$.
Monads as extensions

Idea:
A monad is like a consistent way of extending spaces to include generalized elements and generalized functions of a specific kind.

A functor $T : C \rightarrow C$ consists of:
1. To each space X, an “extended” space TX.
2. Given $f : X \rightarrow Y$, an “extension” $Tf : TX \rightarrow TY$.
Monads as extensions

Idea:
A monad is like a consistent way of extending spaces to include generalized elements and generalized functions of a specific kind.

A functor \(T : C \to C \) consists of:
1. To each space \(X \), an “extended” space \(TX \).
2. Given \(f : X \to Y \), an “extension” \(Tf : TX \to TY \).
Monads as extensions

Idea:
A monad is like a consistent way of extending spaces to include generalized elements and generalized functions of a specific kind.

A functor $T : C \to C$ consists of:

1. To each space X, an “extended” space TX.
2. Given $f : X \to Y$, an “extension” $Tf : TX \to TY$.
Monads as extensions
Monads as extensions

\[x_1 \quad x_2 \quad x_3 \]

\[X \quad TX \]

- \(x_1 \)
- \(x_2 \)
- \(x_3 \)

\(x_1 \cdot x_2 \cdot x_3 \)
A natural transformation $\eta : \text{id}_C \Rightarrow T$ consists of:

1. To each X a map $\eta_X : X \to TX$, usually monic.
Monads as extensions

A natural transformation $\eta : \text{id}_C \Rightarrow T$ consists of:

1. To each X a map $\eta_X : X \to TX$, usually monic.
2. This diagram must commute:

$$
\begin{array}{cccc}
X & \xrightarrow{f} & Y \\
\downarrow{\eta_X} & & \downarrow{\eta_Y} \\
TX & \xrightarrow{Tf} & TY
\end{array}
$$
Monads as extensions

A natural transformation $\mu : TT \Rightarrow T$, is:
1. For each X a map $\mu_X : TTX \rightarrow TX$;
2. Again a naturality diagram as before.
Monads as extensions

A natural transformation \(\mu : TT \Rightarrow T \), is:
1. For each \(X \) a map \(\mu_X : TTX \rightarrow TX \);
2. Again a naturality diagram as before.

\[
\text{Diagram:}
\]
Monads as extensions

A natural transformation $\mu : TT \Rightarrow T$, is:
1. For each X a map $\mu_X : TTX \rightarrow TX$;
2. Again a naturality diagram as before.
Definition:
Let T be a monad on C. A *Kleisli morphism* from X to Y is a morphism $X \to TY$.
Monads as extensions

Definition:
Let T be a monad on C. A *Kleisli morphism* from X to Y is a morphism $X \to TY$.

![Diagram of monads as extensions]

X Y
Monads as extensions

Definition:
Given Kleisli morphisms $k : X \rightarrow TY$ and $h : Y \rightarrow TZ$, their Kleisli composition is the morphism $h \circ_{kl} k$ given by:

$$X \xrightarrow{k} TY \xrightarrow{Th} TTZ \xrightarrow{\mu} TZ$$
Monads as extensions

Definition:
Given Kleisli morphisms $k : X \rightarrow TY$ and $h : Y \rightarrow TZ$, their Kleisli composition is the morphism $h \circ_{kl} k$ given by:

$$
\begin{align*}
X & \xrightarrow{k} TY \\
& \xrightarrow{Th} TTZ \\
& \xrightarrow{\mu} TZ
\end{align*}
$$
Monads as extensions

Definition:
Given Kleisli morphisms $k : X \rightarrow TY$ and $h : Y \rightarrow TZ$, their Kleisli composition is the morphism $h \circ_{kl} k$ given by:

$$X \xrightarrow{k} TY \xrightarrow{Th} TTZ \xrightarrow{\mu} TZ$$

![Diagram showing the composition of Kleisli morphisms]

X Y Z
Monads as extensions

Definition:
Given Kleisli morphisms $k : X \to TY$ and $h : Y \to TZ$, their Kleisli composition is the morphism $h \circ_{kl} k$ given by:

$$X \xrightarrow{k} TY \xrightarrow{Th} TTZ \xrightarrow{\mu} TZ$$

$$X \xrightarrow{k} \bullet \quad Y \xrightarrow{Th} \bullet \quad Z$$
Monads as extensions

Definition:
Given Kleisli morphisms $k : X \to TY$ and $h : Y \to TZ$, their Kleisli composition is the morphism $h \circ_{kl} k$ given by:

$$X \xrightarrow{k} TY \xrightarrow{Th} TTZ \xrightarrow{\mu} TZ$$
Monads as extensions

Definition:
Given Kleisli morphisms $k : X \rightarrow TY$ and $h : Y \rightarrow TZ$, their Kleisli composition is the morphism $h \circ_{kl} k$ given by:

$$X \xrightarrow{k} TY \xrightarrow{Th} TTZ \xrightarrow{\mu} TZ$$

![Diagram showing the composition of Kleisli morphisms]

X Y Z
Monads as extensions

Exercise:
Prove that Kleisli morphisms form a category thanks to the commutativity of these diagrams:

\[
\begin{align*}
TX & \xrightarrow{T\eta} TTX \\
& \Downarrow \mu \\
& TX
\end{align*}
\]

\[
\begin{align*}
TX & \xrightarrow{\eta T} TTX \\
& \Downarrow \mu \\
& TX
\end{align*}
\]

\[
\begin{align*}
TTTX & \xrightarrow{T\mu} TTX \\
& \Downarrow \mu \\
& TTX
\end{align*}
\]

\[
\begin{align*}
TTTX & \xrightarrow{\mu T} TTX \\
& \Downarrow \mu \\
& TX
\end{align*}
\]

where the identity morphisms of the Kleisli category are given by the units \(\eta : X \to TX \).
Probability monads

Idea [Giry, 1982]:
Spaces of “random elements” generalizing usual elements.
Probability monads

Idea [Giry, 1982]:
Spaces of “random elements” generalizing usual elements.

- Base category C
Probability monads

Idea [Giry, 1982]:
Spaces of “random elements” generalizing usual elements.

- Base category C

X
Probability monads

Idea [Giry, 1982]:
Spaces of “random elements” generalizing usual elements.

- Base category C
- Functor $X \mapsto PX$
Probability monads

Idea [Giry, 1982]:
Spaces of “random elements” generalizing usual elements.

- Base category C
- Functor $X \mapsto PX$
- Unit $\delta : X \rightarrow PX$
Probability monads

Idea [Giry, 1982]:
Spaces of “random elements” generalizing usual elements.

- Base category C
- Functor $X \mapsto PX$
- Unit $\delta : X \to PX$
Probability monads

Idea [Giry, 1982]:
Spaces of “random elements” generalizing usual elements.

- Base category C
- Functor $X \mapsto PX$
- Unit $\delta : X \rightarrow PX$
Probability monads

Idea [Giry, 1982]:
Spaces of “random elements” generalizing usual elements.

- Base category C
- Functor $X \mapsto PX$
- Unit $\delta : X \to PX$
Probability monads

Idea [Giry, 1982]:
Spaces of “random elements” generalizing usual elements.

- Base category C
- Functor $X \mapsto PX$
- Unit $\delta : X \to PX$
Probability monads

Idea [Giry, 1982]:
Spaces of “random elements” generalizing usual elements.

- Base category C
- Functor \(X \mapsto PX \)
- Unit \(\delta : X \to PX \)
- Composition \(E : PPX \to PX \)
A Kleisli morphism from X to Y is a morphism $X \rightarrow PY$. We can interpret this as a “random function” or “random transition”.
Probability monads

Given Kleisli morphisms \(k : X \to PY \) and \(h : Y \to PZ \), their Kleisli composition is the morphism \(h \circ_{kl} k \) given by:

\[
\begin{align*}
X & \xrightarrow{k} PY & \xrightarrow{Ph} PPZ & \xrightarrow{E} PZ
\end{align*}
\]
Probability monads

Given Kleisli morphisms $k : X \to PY$ and $h : Y \to PZ$, their Kleisli composition is the morphism $h \circ_{kl} k$ given by:

$$X \xrightarrow{k} PY \xrightarrow{Ph} PPZ \xrightarrow{E} PZ$$
Probability monads

Given Kleisli morphisms $k : X \to PY$ and $h : Y \to PZ$, their Kleisli composition is the morphism $h \circ_{kl} k$ given by:

\[
\begin{align*}
X & \xrightarrow{k} PY \\
& \xrightarrow{Ph} PPZ \\
& \xrightarrow{E} PZ
\end{align*}
\]
Probability monads

Given Kleisli morphisms \(k : X \to PY \) and \(h : Y \to PZ \), their Kleisli composition is the morphism \(h \circ_{kl} k \) given by:

\[
\begin{align*}
X \xrightarrow{k} PY & \xrightarrow{Ph} PPZ & \xrightarrow{E} PZ
\end{align*}
\]
Probability monads

Given Kleisli morphisms \(k : X \rightarrow PY \) and \(h : Y \rightarrow PZ \), their Kleisli composition is the morphism \(h \circ_{kl} k \) given by:

\[
\begin{align*}
X & \xrightarrow{k} PY & \xrightarrow{Ph} PPZ & \xrightarrow{E} PZ
\end{align*}
\]
Probability monads

Given Kleisli morphisms $k : X \to PY$ and $h : Y \to PZ$, their Kleisli composition is the morphism $h \circ_{kl} k$ given by:

\[X \xrightarrow{k} PY \xrightarrow{Ph} PPZ \xrightarrow{E} PZ \]

\[
\begin{array}{c}
X \\
\bullet
\end{array} \xrightarrow{k} \begin{array}{c}PY \\
\bullet \end{array} \xrightarrow{Ph} \begin{array}{c}PPZ \\
\bullet \end{array} \xrightarrow{E} \begin{array}{c}PZ \\
\bullet \end{array}
\]

\[X \xrightarrow{k} PY \xrightarrow{Ph} PPZ \xrightarrow{E} PZ \]
The distribution monad on Set

Definition:
Let X be a set. A f.s. distribution on X is a function $p : X \to [0, 1]$ such that
- It is nonzero for finitely many $x \in X$;
- $\sum_{x \in X} p(x) = 1$.
We denote by DX the set of f.s. distributions on X.
The distribution monad on Set

Definition:
Let X be a set. A f.s. distribution on X is a function $p : X \to [0, 1]$ such that
- It is nonzero for finitely many $x \in X$;
- $\sum_{x \in X} p(x) = 1$.

We denote by DX the set of f.s. distributions on X.

\[X \]
The distribution monad on Set

Definition:
Let X be a set. A *f.s. distribution* on X is a function $p : X \rightarrow [0, 1]$ such that

- It is nonzero for finitely many $x \in X$;
- $\sum_{x \in X} p(x) = 1$.

We denote by DX the set of f.s. distributions on X.

![Diagram of X with points]
The distribution monad on Set

Definition:
Let \(f : X \to Y \) be a function and \(p \in DX \). The pushforward of \(p \) along \(f \) is the distribution \(f_*p \in DY \) given by

\[
f_*p(y) := \sum_{x \in f^{-1}(y)} p(x).
\]

We denote the map \(f_* : DX \to DY \) by \(Df \), this makes \(D \) a functor.
The distribution monad on Set

Definition:
Let $f : X \to Y$ be a function and $p \in DX$. The pushforward of p along f is the distribution $f_*p \in DY$ given by

$$f_*p(y) := \sum_{x \in f^{-1}(y)} p(x).$$

We denote the map $f_* : DX \to DY$ by Df, this makes D a functor.
The distribution monad on \textit{Set}

Definition:
Let \(f : X \rightarrow Y \) be a function and \(p \in DX \). The \textit{pushforward of} \(p \) \textit{along} \(f \) is the distribution \(f_*p \in DY \) given by

\[
f_*p(y) := \sum_{x \in f^{-1}(y)} p(x).
\]

We denote the map \(f_* : DX \rightarrow DY \) by \(Df \), this makes \(D \) a functor.
The distribution monad on Set

Definition:
Let \(f : X \to Y \) be a function and \(p \in DX \). The pushforward of \(p \) along \(f \) is the distribution \(f_*p \in DY \) given by

\[
f_*p(y) := \sum_{x \in f^{-1}(y)} p(x).
\]

We denote the map \(f_* : DX \to DY \) by \(Df \), this makes \(D \) a functor.
The distribution monad on Set

Definition:
Let X be a set. The map $\delta : X \to DX$ maps $x \in X$ to the distribution $\delta_x \in DX$ given by

$$
\delta_x(y) = \begin{cases}
1 & y = x; \\
0 & y \neq x.
\end{cases}
$$

This gives a natural map $\delta : X \to DX$, a component of the unit of the monad.
The distribution monad on Set

Definition:
Let X be a set. The map $\delta : X \to DX$ maps $x \in X$ to the distribution $\delta_x \in DX$ given by

$$\delta_x(y) = \begin{cases} 1 & y = x; \\ 0 & y \neq x. \end{cases}$$

This gives a natural map $\delta : X \to DX$, a component of the unit of the monad.
The distribution monad on Set

Definition:
Let \(X \) be a set. Given \(\xi \in DDX \), define \(E\xi \in DX \) to be distribution given by

\[
E\xi(x) := \sum_{p \in DX} p(x) \xi(p).
\]

This gives a natural map \(E : DDX \to DX \), a component of the multiplication of the monad.
The distribution monad on Set

Definition:
Let X be a set. Given $\xi \in DDX$, define $E\xi \in DX$ to be distribution given by

$$E\xi(x) := \sum_{p \in DX} p(x) \xi(p).$$

This gives a natural map $E : DDX \to DX$, a component of the multiplication of the monad.
The distribution monad on Set

Definition:
Let X be a set. Given $\xi \in DDX$, define $E\xi \in DX$ to be distribution given by

$$E\xi(x) := \sum_{p \in DX} p(x) \xi(p).$$

This gives a natural map $E : DDX \to DX$, a component of the multiplication of the monad.
The distribution monad on Set

Definition:
Let X be a set. Given $\xi \in DDX$, define $E\xi \in DX$ to be distribution given by

$$E\xi(x) := \sum_{p \in DX} p(x) \xi(p).$$

This gives a natural map $E : DDX \to DX$, a component of the multiplication of the monad.
The distribution monad on Set

Definition:
Let X be a set. Given $\xi \in DDX$, define $E\xi \in DX$ to be distribution given by

$$E\xi(x) := \sum_{p \in DX} p(x) \xi(p).$$

This gives a natural map $E : DDX \to DX$, a component of the multiplication of the monad.
The distribution monad on Set

Definition:
Let X be a set. Given $\xi \in DDX$, define $E\xi \in DX$ to be distribution given by

$$E\xi(x) := \sum_{p \in DX} p(x) \xi(p).$$

This gives a natural map $E : DDX \to DX$, a component of the multiplication of the monad.
The distribution monad on Set

Kleisli morphisms:

A Kleisli morphism for D is a function $k : X \rightarrow DY$. In other words, it is function $\bar{k} : X \times Y \rightarrow [0, 1]$ such that

- For each $x \in X$, $\bar{k}(x, -) : Y \rightarrow [0, 1]$ is nonzero in finitely many entries;
- For each $x \in X$, $\sum_{y \in Y} \bar{k}(x, y) = 1$.
The distribution monad on Set

Kleisli morphisms:
A Kleisli morphism for D is a function $k : X \rightarrow DY$. In other words, it is function $\bar{k} : X \times Y \rightarrow [0, 1]$ such that

- For each $x \in X$, $\bar{k}(x, -) : Y \rightarrow [0, 1]$ is nonzero in finitely many entries;
- For each $x \in X$, $\sum_{y \in Y} \bar{k}(x, y) = 1$.

Kleisli composition:
The Kleisli composition of $k : X \rightarrow DY$ and $h : Y \rightarrow DZ$ is given by the Chapman-Kolmogorov equation:

$$(h \circ_{kl} k)(x, z) = \sum_{y \in Y} k(x, y) h(y, z).$$
The Giry monad on Meas

Let X be a measurable space. Define PX to be

- The set of probability measures on X
The Giry monad on Meas

Let X be a measurable space. Define PX to be

- The set of probability measures on X
- Equipped with the σ-algebra generated by the evaluation functions
 $\varepsilon_A : PX \to \mathbb{R}$ given by

 $$p \mapsto p(A)$$

 for all $A \subseteq X$ measurable.
The Giry monad on Meas

Let X be a measurable space. Define PX to be

- The set of probability measures on X
- Equipped with the σ-algebra generated by the evaluation functions $\varepsilon_A : PX \to \mathbb{R}$ given by
 \[p \mapsto p(A) \]
 for all $A \subseteq X$ measurable.
- Equivalently, the σ-algebra is generated by the “integration” functions $\varepsilon_f : PX \to \mathbb{R}$ given by
 \[p \mapsto \int f \, dp, \]
 for all $f : X \to [0, 1]$ measurable.
The Giry monad on Meas

Functoriality:
Let $f : X \to Y$ be a measurable function. Given a measure $p \in PX$, recall that the pushforward measure $f_*p \in PY$ is given by

$$f_*p(B) := p(f^{-1}(B)).$$

We get a measurable map $Pf : PX \to PY$ which makes P a functor.
The Giry monad on Meas

Functoriality:
Let $f : X \to Y$ be a measurable function. Given a measure $p \in PX$, recall that the pushforward measure $f_*p \in PY$ is given by

$$f_*p(B) := p(f^{-1}(B)).$$

We get a measurable map $Pf : PX \to PY$ which makes P a functor.

Unit:
Given a measurable space X, to each $x \in X$ we can give the Dirac delta measure $\delta_x \in PX$. This gives a measurable map $\delta : X \to PX$, which is natural, and forms a component of the unit of the monad.
The Giry monad on Meas

Multiplication:
Given a measurable space \(X \) and a measure \(\pi \in PPX \), we define the measure \(E\pi \in PX \) by

\[
E\pi(A) := \int_{PX} p(A) d\pi(p),
\]

This gives a measurable map \(E : PPX \to PX \) which is natural in \(X \) and forms a component of the monad multiplication.
The Giry monad on Meas

Kleisli morphisms:
A Kleisli morphism is a measurable map $k : X \to PY$, in other words, a Markov kernel between X and Y. Denote $k(x) \in PY$ by k_x.
The Giry monad on Meas

Kleisli morphisms:
A Kleisli morphism is a measurable map $k : X \rightarrow PY$, in other words, a Markov kernel between X and Y. Denote $k(x) \in PY$ by k_x.

Kleisli composition:
The composition of Kleisli morphisms reproduces the Chapman-Kolmogorov equation for general measures. Given $k : X \rightarrow PY$ and $h : Y \rightarrow PZ$, we get that

$$(h \circ_\mathcal{K} k)(x)(C) = \int_Y h_y(C) dk_x(y)$$

for each $x \in X$ and for each $C \subseteq Z$ measurable.
Other probability monads

<table>
<thead>
<tr>
<th>Category</th>
<th>Monad (P)</th>
<th>Points of PX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set</td>
<td>Distribution monad</td>
<td>f.s. distributions</td>
</tr>
<tr>
<td>Meas</td>
<td>Giry monad</td>
<td>probability measures</td>
</tr>
<tr>
<td>Pol</td>
<td>Giry monad</td>
<td>Borel probability measures</td>
</tr>
<tr>
<td>QBS</td>
<td>Prob. monad</td>
<td>Eq. classes of R.V.s</td>
</tr>
<tr>
<td>DCPO</td>
<td>Prob. powerdomain</td>
<td>cont. valuations</td>
</tr>
<tr>
<td>Top</td>
<td>Ext. prob. PD</td>
<td>cont. valuations</td>
</tr>
<tr>
<td>Top</td>
<td>Prob. monad</td>
<td>τ-smooth Borel prob. measures</td>
</tr>
<tr>
<td>CHaus</td>
<td>Radon monad</td>
<td>Radon prob. measures</td>
</tr>
<tr>
<td>Met</td>
<td>Kantorovich monad</td>
<td>Radon prob. measures of FFM</td>
</tr>
</tbody>
</table>

More on the nLab, “probability monad” [nLab article].

21 of 27
Joints and marginals

Idea:
Probability theory is mostly about *interactions* of random variables.

- Composite states
 \(X \times Y \)
Joints and marginals

Idea:
Probability theory is mostly about *interactions* of random variables.

- Composite states
 \[X \times Y \]
Joints and marginals

Idea:
Probability theory is mostly about *interactions* of random variables.

- Composite states
 \[
 X \times Y
 \]
Joints and marginals

Idea:
Probability theory is mostly about *interactions* of random variables.

- Composite states $X \times Y$
- Given marginals
Joints and marginals

Idea:
Probability theory is mostly about *interactions* of random variables.

- Composite states $X \times Y$
- Given marginals
- Many possible joints
Joints and marginals

Idea:
Probability theory is mostly about \textit{interactions} of random variables.

- Composite states \(X \times Y \)
- Given marginals
- Many possible joints
Joints and marginals

Idea:
Probability theory is mostly about *interactions* of random variables.

- Composite states $X \times Y$
- Given marginals
- Many possible joints
Joints and marginals

Idea:
Probability theory is mostly about *interactions* of random variables.

- Composite states $X \times Y$
- Given marginals
- Many possible joints
- One canonical choice of “independence”
Joints and marginals

Idea:
Given objects X and Y, a probability distribution on $X \times Y$ is not just pair of distributions on X and Y separately. However, given $p \in PX$ and $q \in PY$, we get a measure $p \otimes q \in P(X \times Y)$.

$$PX \times PY \xrightarrow{\nabla} P(X \times Y)$$
Joints and marginals

Idea:
Given objects X and Y, a probability distribution on $X \times Y$ is not just pair of distributions on X and Y separately. However, given $p \in PX$ and $q \in PY$, we get a measure $p \otimes q \in P(X \times Y)$.

$$PX \times PY \xrightarrow{\nabla} P(X \times Y)$$

This gives a *monoidal structure* to the probability monad. (Technically, we need ∇ together with a map $1 \rightarrow P1$, but for probability monads 1 and $P1$ are uniquely isomorphic.)
Joints and marginals

\[PX \times PY \times PZ \xrightarrow{\nabla \times \text{id}} P(X \times Y) \times PZ \]

\[PX \times P(Y \times Z) \xrightarrow{\nabla} P(X \times Y \times Z) \]
Joints and marginals

\[X \times Y \]

\[\pi_1 \quad \pi_2 \]

\[X \quad Y \]
Joints and marginals

\[P(X \times Y) \]

\[P_X \]

\[P_Y \]

\[P_{\pi_1} \]

\[P_{\pi_2} \]
Joints and marginals

\[P(X \times Y) \]

\[\overset{P_{\pi_1}}{\text{PX}} \quad \overset{P_{\pi_2}}{\text{PY}} \]

\[\overset{\pi_1}{\text{PX}} \quad \overset{\pi_2}{\text{PY}} \]
Joints and marginals

\[P(X \times Y) \]

\[P(\pi_1) \quad P(\pi_2) \]

\[PX \quad PX \times PY \quad PY \]

\[\Delta \]

\[P(X \times Y \times Z) \xrightarrow{\Delta \times \text{id}} PX \times P(Y \times Z) \]

\[\xrightarrow{\text{id} \times \Delta} P(X \times Y) \times PZ \xrightarrow{\Delta} PX \times PY \times PZ \]
Joints and marginals

Operations on distributions:
Let \(f : X \times Y \rightarrow Z \) be a binary function. Then we can form the map

\[
PX \times PY \xrightarrow{\nabla} P(X \times Y) \xrightarrow{Pf} PZ
\]
Joints and marginals

Operations on distributions:
Let $f : X \times Y \rightarrow Z$ be a binary function. Then we can form the map

$$PX \times PY \xrightarrow{\nabla} P(X \times Y) \xrightarrow{Pf} PZ$$

For example, the addition as a map $\mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ gives the convolution of real-valued random variables.
Joints and marginals

Operations on distributions:
Let \(f : X \times Y \rightarrow Z \) be a binary function. Then we can form the map

\[
PX \times PY \xrightarrow{\nabla} P(X \times Y) \xrightarrow{Pf} PZ
\]

For example, the addition as a map \(\mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \) gives the *convolution* of real-valued random variables.
Joints and marginals

Operations on distributions:
Let $f : X \times Y \rightarrow Z$ be a binary function. Then we can form the map

$$PX \times PY \xrightarrow{\nabla} P(X \times Y) \xrightarrow{Pf} PZ$$

For example, the addition as a map $\mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ gives the convolution of real-valued random variables.
Joints and marginals

Operations on distributions:
Let $f : X \times Y \rightarrow Z$ be a binary function. Then we can form the map

$$PX \times PY \xrightarrow{\nabla} P(X \times Y) \xrightarrow{Pf} PZ$$

For example, the addition as a map $\mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ gives the *convolution* of real-valued random variables.
Some references

The Metric Monad for Probabilistic Nondeterminism.

Bimonoidal structure of probability monads.
Proceedings of MFPS 34.

Monads, partial evaluations, and rewriting.
Proceedings of MFPS 36.

A Categorical Approach to Probability Theory.
In Categorical aspects of topology and analysis, volume 915 of Lecture Notes in Mathematics.

A convenient category for higher-order probability theory.
Proceedings of LICS’17, (77):1–12.

From probability monads to commutative effectus.

The monad of probability measures over compact ordered spaces and its Eilenberg-Moore algebras.

nLab article.
Monads of probability, measures and valuations.
ncatlab.org/nlab/show/probability+monad

Categorical Probability and Stochastic Dominance in Metric Spaces.
www.paoloperrone.org/phdthesis.pdf.

Notes on category theory with examples from basic mathematics.