Synthetic topology in Homotopy Type Theory for probabilistic programming

Martin Bidlingmaier Florian Faissole Bas Spitters

1907.10674
Monadic programming with effects

Moggi’s computational λ-calculus

Kleisli category of a monad:

- \(\text{Obj}(C_T) = \text{Obj}(C) \);
- \(C_T(A, B) = C(A, T(B)) \).

Used for:

- Partial functions: \(X + \perp \)
- State: \((X \times S)^S \)
- Non-determinism: \(\mathcal{P}(X) \)
- Discrete probabilities: \(\text{convex}(X) \)
Probability theory

- **Classical probability**: measures on σ-algebras of sets
 - σ-algebra: collection closed under countable \bigcup, \bigcap
 - measure: σ-additive map to \mathbb{R}.

- **Giry monad**:
 - $X \mapsto \text{Meas}(X)$ is a monad...
 - ...on measurable spaces,
 - ...on subcategories of topological spaces or domains.

 valuations restrict measures to open sets.

Problem 1: Meas is not CCC
Problem 2: Not a monad on Set

Use a synthetic approach
Plan

Plan:

- Develop a richer semantics using topos theory
- Synthetic topology and its models
- Probability theory using synthetic topology
- Use HoTT to formalize this

Both computable and topological semantics
Synthetic topology
Synthetic topology

Scott: Synthetic domain theory
Domains as sets in a topos (Hyland, Rosolini, ...)
By adding axioms to the topos we make a DSL for domains.

Synthetic topology
(Brouwer, ..., Escardo, Taylor, Vickers, Bauer, ..., Lešnik)
Every object carries a topology, all maps are continuous
Idea: Sierpinski space $\mathbb{S} = (\neg\neg)$ classifies opens:

$$O(X) \cong X \to \mathbb{S}$$

Convenient category of/type theory for ‘topological’ spaces.

Synthetic (real) computability
semi-decidable truth values \mathbb{S} classify semi-decidable subsets.

Common generalization based on abstract properties for $\mathbb{S} \subset \Omega$:
Dominance axiom: monos classified by \mathbb{S} compose.
Synthetic topology

Ambient logic: predicative topos (hSets).

Assumption: free ω-cpo completions exist.

This follows from:
- QIITs [ADK16]
- countable choice
- impredicativity
- classical logic

The ω-cpo completion of 1 is a dominance.
More axioms for synthetic topology

Definition
A space X is metrizable if its intrinsic topology, given by $X \to S$, coincides with a metric topology.

The fan principle:
Fan: $2^\mathbb{N}$ is metrizable and compact

Intuitionistic, will be used for the synthetic Lebesgue measure.

Fix such a topos where every object comes with a topology.
Standard axioms for continuous computations:
Brouwer, Kleene-Vesley K_2-realizability (TTE)
Gives a realizability topos

CAC $\vdash S$ is the set of increasing binary sequences modulo

\[\alpha \sim \beta \text{ iff there exists } n, \alpha n = \beta n = 1. \]
Big Topos

Topological site:
A category of topological spaces closed under open inclusions
Covering by jointly epi open inclusions
Big topos: sheaves over such a site
S is Yoneda of the Sierpinski space

Fourman: Model for intuitionism: all maps are continuous

Convenient category: Nice category vs nice objects
Valuation monad
Valuations and Lower integrals

Lower Reals:
\[r : \mathbb{R}_l := \mathbb{Q} \to \mathbb{S} \]
\[\forall p, r(p) \iff \exists q, (p < q) \land r(q). \]
\[\sim \text{ lower semi-continuous topology.} \]

Dedekind Reals:
\[\mathbb{R}_D \subset (\mathbb{Q} \to \mathbb{S}) \times (\mathbb{Q} \to \mathbb{S}) \]
\[\text{lower real} \quad \text{upper real} \]

Valuations:
Valuations on \(A : \text{Set} \):
\[\text{Val}(A) = (A \to \mathbb{S}) \to \mathbb{R}_l^+ \]
- \(\mu(\emptyset) = 0 \)
- Modularity
- Monotonicity
- \(\omega \)-continuity

Integrals:
Positive integrals:
\[\text{Int}^+(A) = (A \to \mathbb{R}_D^+) \to \mathbb{R}_D^+ \]
- \(\int (\lambda x.0) = 0 \)
- Additivity
- Monotonicity
- \(\omega \)-continuity

Riesz theorem: homeomorphism between integrals and valuations.
Constructive proof (Coquand/S): \(A \) regular compact locale.
Valuations and Lower integrals

Lower Reals:
\[r : \mathbb{R}_l := \mathbb{Q} \to \mathbb{S} \]
\[\forall p, r(p) \iff \exists q, (p < q) \land r(q). \]
\[\rightarrow \text{lower semi-continuous topology.} \]

Dedekind Reals:
\[\mathbb{R}_D \subset (\mathbb{Q} \to \mathbb{S}) \times (\mathbb{Q} \to \mathbb{S}) \]
\[\text{lower real} \quad \text{upper real} \]

Valuations:
Valuations on \(A : \text{Set} \):
\[\text{Val}(A) = (A \to \mathbb{S}) \to \mathbb{R}_l^+ \]
- \(\mu(\emptyset) = 0 \)
- Modularity
- Monotonicity
- \(\omega \)-continuity

Lower integrals:
Positive integrals:
\[\text{Int}^+(A) = (A \to \mathbb{R}_l^+) \to \mathbb{R}_l^+ \]
- \(\int (\lambda x.0) = 0 \)
- Additivity
- Monotonicity
- \(\omega \)-continuity

Riesz theorem: homeomorphism between integrals and valuations.
Analysis based on S

HoTT book: ‘one experiment with QIITs is enough…’

We’ve done the experiment:
We’ve learned:
- the lower reals are the ω-cpo completion of \mathbb{Q}
- avoid countable choice by indexing by S
- similarity with geometric reasoning (open power set, no choice)
Lebesgue valuation

Fubini: the monad is (almost) commutative

So far, classically, ω-supported discrete valuations.

To construct the Lebesgue valuation we use the fan principle: the locale 2^ω is spatial.
Probabilistic programming
Monadic semantics

Kleisli category:

Giry monad: (space) \leadsto (space of its valuations):
- **functor** $\mathcal{M} : \text{Space} \rightarrow \text{Space}$.
- **unit operator** $\eta_x = \delta_x$ (Dirac)
- **bind operator** $(\mu >\!>\!= M)(f) = \int_\mu \lambda x. (M x) f$.

$(>\!>\!=) :: \mathcal{M} A \rightarrow (A \rightarrow \mathcal{M} B) \rightarrow \mathcal{M} B$.
Function types

To interpret the full computational \(\lambda\)-calculus we need \(T\)-exponents \((A \rightarrow TB)\) as objects. The standard Giry monads do not support this. hSet is cartesian closed, so we obtain a higher order language.

Moreover, the Kleisli category is \(\omega\)-cpo enriched (subprobability valuations), so we can interpret PCF with fix [Plotkin-Power].

Rich semantics for a programming language.
Unfolding

Huang developed an efficient compiled higher order probabilistic programming language: augur/v2

Semantics in topological domains
(domains with computability structure)

Theorem (Huang/Morrisett/S)

Markov’s Principle ⊢

The interpretation of the monadic calculus in the K2-realizability topos gives the same interpretation as in topological domains.
Finally: HoTT...
Type theory

Formalizing this construction in homotopy type theory.

- Correctness, proof assistant for continuous probabilistic programs
- Programming language with an expressive type system
- Potentially: type theory based on K2 (as in Prl)
Discrete probabilities : ALEA library

ALEA library (Audebaud, Paulin-Mohring) basis for CertiCrypt

- Discrete measure theory in Coq;
- Monadic approach (Giry, Jones/Plotkin, ...):

\[(A \rightarrow [0, 1]) \rightarrow [0, 1] \]

- submonad: monotonicity, summability, linearity.

Example: flip coin : \(Mbool \)

\[\lambda (f : bool \rightarrow [0, 1]).(0.5 \times f(true) + 0.5 \times f(false)) \]
Univalent homotopy type theory

Coq lacks quotient types and functional extensionality. ALEA uses setoids, \((T, \equiv)\). (‘exact completion’)

Use Univalent homotopy type theory as an internal type theory for a generalization of setoids, groupoids, ...

We use Coq’s HoTT library. (CPP: Bauer, Gross, Lumsdaine, Shulman, Sozeau, Spitters)
Toposes and types

How to formalize toposes in type theory?
Rijke/S: hSets in HoTT form a (predicative) topos: large power objects.

Shulman: HoTT can interpreted in higher toposes.
Here: higher topos over a topological site.
hSets coincide with the 1-topos

Constructive model: Cubical stacks (Coquand)
Cubical assemblies (Uemura)...
... However, hSet logic is different from the 1-topos

HoTT for predicative constructive maths without countable choice.
Implementation in HoTT/Coq

Our basis: Cauchy reals in HoTT as QIIT (book, Gilbert)
- HoTTClasses: like MathClasses but for HoTT
- Experimental Induction-Recursion branch by Sozeau

Partiality (ADK): Construction in HoTT:
free ω-cpo completion as a higher inductive inductive type:

\[A_\bot : hSet \quad \bot : A_\bot \quad \eta : A \to A_\bot \]

\[\subseteq_{A_\bot} : A_\bot \to A_\bot \to Type \]

\[\cup : \prod_{f : \mathbb{N} \to A_\bot} \left(\prod_{n : \mathbb{N}} f(n) \subseteq_{A_\bot} f(n + 1) \right) \to A_\bot \]

\[\subseteq \text{ must satisfy the expected relations.} \]

\[S := \text{Partial}(1). \]
Higher order probabilistic computation (Related work)

Compare: Top is not Cartesian closed.
1. Define a convenient super category. E.g. quasi-topological spaces: concrete sheaves over compact Hausdorff spaces. This is a quasi-topos which models synthetic topology. Even: big topos
2. Add probabilities inside this setting.

Staton, Yang, Heunen, Kammar, Wood model for higher order probabilistic programming has the same ingredients (but in opposite direction):
1. Standard Giry model for probabilistic computation
2. Obtain higher order by (a tailored) Yoneda
Conclusions

- Probabilistic computation with continuous data types
- Formalization in HoTT
- Experiment with synthetic topology in HoTT
- Extension of the Giry monad from locales to synthetic topology
- Model for higher order probabilistic computation: Augur/v2