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Overview

• Quantum-mechanical axioms of composite systems.

• Their significance for nonlocality theory. (Tsirelson’s problem)

• Strong ties to an open problem on C ∗-algebras. (Kirchberg’s
conjecture)

• Two new paradigms of quantum correlations.

Disclaimer: Some of these results were obtained independently in

Junge, Navascués, Palazuelos, Pérez-Garćıa, Scholz, Werner,
Connes’ embedding problem and Tsirelson’s problem,

J. Math. Phys. 52, 012102 (2011).



Composite systems in quantum theory I

Tensor product assumption:

• The state space of a joint system composed out of two
subsystems is a tensor product

HA ⊗HB

with local observables

A⊗ 1 for A ∈ B(HA), 1⊗ B for B ∈ B(HB) .

• Posited by standard quantum theory.

• The composite system can be constructed from the subsystems.



Composite systems in quantum theory II

Commutativity assumption:

• State space of a joint system is a Hilbert space H with local
observables

A,B ∈ B(H) such that AB = BA .

• The joint state space is in general not uniquely determined by the
subsystems.

• Defining H ≡ HA ⊗HB obviously works
⇒ tensor product assumption is a special case.

• For finite-dimensional systems, it is essentially equivalent to the
tensor product assumption.

• Not so in infinite dimensions!
(→ This is what the theory of C ∗-tensor products is about.)



Composite systems in quantum theory III

Philosophical observation:

• Nature does not construct composite systems from subsystems.

• Rather, she presents us composite systems which we perceive as
made out of subsystems.

• ⇒ Correct question: when does a system look like it were
composed out of subsystems?

• One possible answer: the commutativity assumption.



Nonlocality theory: Bell scenarios
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Sets of quantum correlations

• Two sets of quantum correlations P(a, b|x , y) ∈ R
k2m2

,

1. With the tensor product assumption: Q⊗.
2. With the commutativity assumption: Qc .

• Q⊗ is convex, Qc is closed convex.

• It is unclear whether Q⊗ is closed; consider the closure Q⊗.

• Tensor product assumption is a special case of the commutativity
assumption ⇒ Q⊗ ⊆ Qc .

• Tsirelson’s problem: Q⊗
?
= Qc



More on Tsirelson’s problem

Tsirelson’s problem: Q⊗
?
= Qc

• The answer may depend on the Bell scenario considered.

• Every P(a, b|x , y) ∈ Qc coming from a state with
finite-dimensional H lies also in Q⊗.

• No further results are known.

• Physical relevance of a potential negative answer is unclear.

Additional motivation from nonlocality theory:

• Most (all?) examples of quantum correlations use the tensor
product assumption.

• Most (all?) upper bounds on quantum correlations use the
commutativity assumption. (E.g. the semidefinite hierarchy.)

→ Tsirelson’s problem: will improvement of lower and upper bounds
lead to convergence, or will there remain a gap?



Kirchberg’s QWEP conjecture

Let F2 be the free group on two generators. For a discrete group G ,
C ∗(G ) denotes its maximal group C ∗-algebra.

• Kirchberg’s QWEP conjecture:

C ∗(F2)⊗max C
∗(F2)

?
= C ∗(F2)⊗min C

∗(F2)

• Proposed by Kirchberg in 19931.

• Equivalent to Connes’ embedding problem from 1976.

• Many reformulations exist as questions on C ∗-algebras, von
Neumann algebras, operator spaces. . .

1E. Kirchberg, On nonsemisplit extensions, tensor products and exactness of

group C∗-algebras, Invent. Math. (1993).



From Kirchberg’s conjecture to Tsirelson’s problem

Theorem
If QWEP is true, then Q⊗ = Qc in all Bell scenarios.

The proof relies on a characterization of both Q⊗ and Qc in terms of
group C ∗-algebras.



Quantum correlations and group C
∗-algebras

Sketch of the connection to group C ∗-algebras:

• Label the outcomes of an m-outcome measurement by the mth

roots of unity e2πi
j

m .

⇒ Observable is a unitary operator of order m.

• k m-outcome measurements correspond to k unitaries of order m.

• This is equivalent to a unitary representation of the discrete group

Γ = Zm ∗ . . .Zm
︸ ︷︷ ︸

k factors

,

and hence to a representation of C ∗(Γ).

• This allows the use of methods from C ∗-algebra theory, group
theory, and representation theory.

• Example application: CHSH is simple because Z2 ∗ Z2
∼= Z ⋊ Z2.



Spatiotemporal correlations I

• In a usual Bell scenario, each party conducts exactly one
measurement per run.

• More generally, one can consider scenarios where each party is
allowed to conduct several measurements per run in temporal
succession. → “Spatiotemporal correlations”

• Motivated by the group C ∗-algebra approach to quantum
correlations.

• There are examples of Ax
a and B

y
B and an initial state ψ such that

the ensuing spatial correlations are local, but the spatiotemporal
correlations prove nonlocality.



Spatiotemporal correlations II

Tsirelson’s problem can be formulated analogously for spatiotemporal
correlations.

Theorem
If QWEP is true, then Tsirelson’s problem for spatiotemporal
correlations also has a positive answer.

The proof is exactly analogous to the purely spatial case.



Steering data I

• If Alice conducts measurement x and gets the outcome a, then
Bob’s system collapses to the state

ρ(a|x) = trA(ρ(A
x
a ⊗ 1)) (unnormalized: tr(ρ(a|x)) = P(a|x))

• “Steering” of Bob’s system by Alice.
• We call the set of unnormalized states ρ(a|x) steering data.

• Steering data is a quantum analogue of the conditional probability
distribution P(a|x):

classical: P(a|x) quantum: ρ(a|x)

Theorem
Steering data ρ(a|x) can arise in this way if and only if it satisfies the
no-signaling condition:

∑

a

ρ(a|x) is independent of x .



Bipartite steering data I

• Similarly, one can consider the case where both Alice and Bob
measure and can steer the system of a third party:

ρ(a|x) = trAB(ρ(A
x
a⊗1⊗1)) , ρ(b|y) = trAB(ρ(1⊗B

y
b ⊗1)) .

• The system of the third party is taken to be of fixed dimension d ,
so that ρ(a|x), ρ(b, y) ∈ Md (C).

• This is bipartite steering data.

• No joint measurements needed: ρ(a|x) and ρ(b|y) are quantum
analogues of the marginals P(a|x) and P(b|y)!

• Again, there is an obvious variant of Tsirelson’s problem.



Bipartite steering data II

Theorem

1. If QWEP holds, then Tsirelson’s problem for bipartite steering
data has a positive answer in all Bell scenarios.

2. If Tsirelson’s problem for bipartite steering data has a positive
answer in some (non-CHSH) Bell scenario, then QWEP holds.

→ Tsirelson’s problem for bipartite steering data can be considered a
physical reformulation of the QWEP conjecture.



Diagram of implications
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Summary

• We replace the tensor product axiom of quantum mechanics by
the commutativity assumption and study whether this allows
more nonlocality (“Tsirelson’s problem”).

• Assuming the validity of Kirchberg’s QWEP conjecture, we find a
positive answer to this. Likewise for Tsirelson’s problem on
spatiotemporal quantum correlations.

• The proof is based on relating quantum correlations to group
C ∗-algebras.

• Tsirelson’s problem for bipartite steering data is equivalent to
QWEP for every (non-CHSH) Bell scenario.

• In particular, a proof or counterexample in any scenario would at
the same time decide the problem for all other scenarios.

T he End

. . . or rather the beginning?



Backup slides

Backup slides



Backup slides

Proving nonlocality by spatiotemporal correlations I

• 2 qubits on Alice’s side, 1 qubit on Bob’s side. W state:

|W 〉 = 1√
3
|00〉 ⊗ |1〉 + 1√

3
(|01〉 + |10〉) ⊗ |0〉 .

• ±1-valued observables:

A1 = σz ⊗ 1, A2 = σx ⊗ 1, A3 = 1⊗ σz , A4 = 1⊗ σx ,

B1 =
σz − σx√

2
, B2 =

σz + σx√
2

.



Backup slides

Proving nonlocality by spatiotemporal correlations II

• If Alice measures only once: A3 and A4 are redundant, since they
yield the same joint statistics as A1 and A2.
⇒ Situation is equivalent to a 2-qubit system in the CHSH
scenario.
By calculation: no CHSH violation.

• When Alice is allowed to measure twice: she begins with A1 and
then chooses between A3 and A4. The ensuing correlations show
a Hardy-type nonlocality.

It’s a bad example: Alice’s sequential measurements commute.
Open problems:

• Find better examples!

• Are there examples where the correlations are local with up to n

sequential measurements, but nonlocal with n+ 1 sequential
measurements?



Backup slides

The multipartite Tsirelson’s problem

• Tsirelson’s problem, its two extensions, and the QWEP conjecture
generalize all to the multipartite case.

• It seems that the same considerations as in the bipartite case
imply the same results; details will have to checked.

• Even if the usual QWEP conjecture is true, the multipartite
Tsirelson’s problem may still be false.
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