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Abstract

The causal set is a possible discrete substratum for spacetime. This
idea is introduced and some aspects of causal set kinematics are pre-
sented, most of them relating to the question of how the discrete
order defining the causal set corresponds to the geometrical struc-
tures of continuous spacetime. In particular a statistical notion
of “fractal dimension” is developed in some detail. The lectures
conclude with some preliminary remarks on dynamics, and a spec-
ulation on the cosmological constant.

Since the structure I am going to propose as the basis of spacetime is discrete,
let me take a moment to recall briefly why many people find an underlying discrete-
ness more natural than the persistence of a continuum down to arbitrarily small
sizes and short times. I think the main reasons can be summarized by referring to
three self-contradictions or “infinities” which animate many attempts to go beyond
the so-called “standard model” of current physics.

The first infinity can be symbolized by the equation Z = oo. It arises in
quantum field theory, is really a family of infinities, rather than a single one, and
is traditionally dealt with via “renormalization”. The second infinity, symbolized
by Rapeq = 00, arises in classical General Relativity, at the singularities where the
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curvature blows up. This infinity is also very familiar. The third infinity arises in
quantum gravity proper, and can be expressed by the equation Sy = oo, S being
the black-hole entropy. This third infinity, perhaps less widely appreciated than
the other two, results when one tries to actually count the degrees of freedom of
the horizon in any direct manner !. (In addition to contributing this new infinity,
quantum gravity makes some of the old ones worse, of course, since it ruins the
perturbative renormalizability of the so-called standard model.)

It thus seems that the application of quantum ideas to gravity is spawning
new contradictions, rather than ameliorating the old ones, as had been hoped. A
further example of this is the apparent impossibility of measuring the metric on
sub-Planckian scales, without the apparatus collapsing into a black hole.

Since all of these contradictions involve distances around the Planck length or
below, their solution might be found in the hypothesis that, at around 10=32cm,
the continuous manifold of General Relativity gives way to what Riemann called a
‘discrete manifold’, carrying only a finite number of degrees of freedom in any finite
volume. And as a “bonus” there is the possibility (mooted already by Riemann)
that the discrete structure might carry its metric relations within itself, which a
continuous manifold like R* can never do. At the very least, we could expect an
explanation of why a fundamental length appears in physics, just as the atomic
radius furnishes a fundamental scale of distance for ordinary matter.

Now the particular discrete manifold I am proposing is known as a causal set,
which is a set of elements endowed with an order relation that one calls ‘causal’
in the sense of the Correspondence Principle.2~* The way in which this intrinsic
order-structure is taken to relate to (or better give rise to) the metrical continuum
of General Relativity is suggested by the two correspondences,

N<+—V

T=<y+—x€J (y).

The first correspondence means that any region of what we ordinarily think
of as continuous spacetime is made up of only a finite number, N, of elements of
the underlying causal set, and that number is equal to the macroscopic volume V
of the region, when volume is measured in fundamental units. Or to say this the
other way around, what we are actually doing when we measure spacetime volume
is indirectly to count the number of causal set elements comprising the region, just
as weighing a bar of copper is an indirect way to count the copper atoms comprising
the bar. The second correspondence is equally straightforward, and just states that
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the macroscopic light-cone structure of spacetime directly reflects the order relation
of the underlying causal set. An analogy here might be the way the fracture-planes
of a crystal reflect the geometrical structure of its underlying atomic lattice.

Before going any further, I should say more precisely what mathematical struc-
ture I am going to be dealing with. Formally, a causal set is a relation satisfying
axioms of transitivity, acyclicity, and local finiteness. In symbols these axioms say,
respectively,

T<Y<z2=—>1r=<=2

r<yandy<r—=z=y
[z, y]| < oo.

Here < is the order relation defining the causal set, and ||z, y]|, the cardinality of the
“Alexandrov set” or “interval” [z, y], is the number of elements z falling between z
and y in the sense that x < z < y. Taken together, these axioms just say that a
causal set is what mathematicians would call a locally finite, partially ordered set.
(The local finiteness is expressed by the third axiom, which may be a little stronger
than necessary. In its present form it resembles the macroscopic condition that a
Lorentzian manifold be globally hyperbolic.)

One obvious motivation for this particular choice of discrete structure is that it
relates very directly to macroscopic causality, which, as many workers have sensed,
may have a more fundamental character than other macroscopically apparent rela-
tions like length. But what is especially appealing about causal sets is that their
discreteness is essential to their ability to reproduce macroscopic geometry. If an
infinite number of elements were present locally then the correspondence V = N
would lose its meaning, and without it we could at best hope to recover the con-
formal metric, but not the volume-element needed to get from the latter to the full
metric ggp.

To my mind, this blending of order with discreteness is important evidence that
we are on the right track in our choice of fundamental discrete structure. Another
strong encouragement is the prospect of the unification that would accompany a
successful theory based on causal sets. In such a theory, the single relationship <
would unite within itself the topology, the differential structure, the metrical geom-
etry, and of course the causal structure of spacetime. In particular it would explain
the Lorentzian signature of the metric (this being the only signature for which dis-
tinct past and future directions can be defined), whereas from most other points of
view the presence of a minus sign in the signature appears to be mathematically

unnatural.



Kinematics and Dynamics

But how should one go about actually constructing a theory of causal sets?
In the development of most physical theories one can distinguish two stages, corre-
sponding roughly to what in mechanics are called kinematics and dynamics.

In the present case, the former stage would be concerned first of all with the
fact that the main macroscopic properties we would like to make contact with
are emergent in the sense that they become meaningful only when the causal set is
configured in an appropriate way. Concepts such as length, topology, and dimension
make little sense for a generic causal set; so it is necessary to understand in what
circumstances they do emerge. We would like to be able to recognize when such
circumstances prevail, and equally important, to learn how in such cases we can
read information about the effective continuum geometry directly out from the
underlying order itself. To appreciate the difficulty of this task, it is enough to
glance at figure 1, which shows three fairly simple causal sets whose dimension is
two in a sense we will make more precise below.

A second task of this kinematical stage of investigation would be just to gain
familiarity with the new mathematics needed to describe causal sets, much of which
belongs to the branch of combinatorial theory devoted to partial orders. Unfortu-
nately this branch of mathematics is unfamiliar to most physicists, and it is also
true that the questions mathematicians have concentrated on are not always those
which are likely to be the most relevant physically. So a significant period of kine-
matical development is likely to be needed before we possess the concepts which
will help us survey the different possibilities for constructing a dynamics for causal
sets.

The dynamical stage of development of causal set theory would, of course,
be the one in which we would understand their “laws of motion”, laws which are
presumably quantum in character. But because time itself is discrete in this case,
we could not hope to write down some Hamiltonian generator of time-evolution for
the causal set. Indeed it is not even clear what ‘configuration space’ could mean for
causal sets, and therefore unclear what Hilbert space such a Hamiltonian could act
on. The only available framework to work with thus appears to be that of the sum-
over-histories. In this framework our job is to assign an amplitude to each causal
set, and then figure out how to sum these amplitudes in order to obtain physically
meaningful probabilities.

In looking for the correct amplitude function, I think, we have a couple of re-
quirements to guide us. Most obviously, there is the requirement that the dynamics
should possess a classical limit in which the causal set resembles a smooth manifold.
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Figure 1. Three causal sets faithfully embedded in M2. Only the irreducible

relations or “links” are represented.



Since a classical limit arises from the constructive interference of many histories,

“sta-

this presumably means that Lorentzian manifolds should be in some sense,
tionary phase” points of the causal set amplitude. Conversely, causal sets which are
far from looking like manifolds (and they are the vast majority) should be points at
which the amplitude is in some sense “extremely rapidly varying”. (Notice, how-
ever, that the amplitude-function can have no actual derivative because a causal set
cannot be varied continuously. This means that a classical dynamics for individual
causal sets will probably not be definable at all, and the actual dynamics will not
be able to be viewed as having “arisen via quantization” —just as one would expect
for a truly fundamental theory.)

The other requirement, related in more than one way to the first, is what I
would call “locality”. By this I mean that the effective Action contributed by the
family of all causal sets corresponding to a given Lorentzian manifold (M, g), should
turn out to be the integral of a locally defined quantity in M. For reasons related
to their inherent Lorentz invariance, this is much more difficult to achieve with
causal sets than with ordinary sorts of lattices. On the other hand, if it ¢s achieved
then one can give simple dimensional reasons why the needed form of the resulting
integrand (namely, —A + iR, where A is the cosmological constant, R the scalar
curvature, and £ = 87G) will follow almost of its own accord. Hence the thing to
focus on in searching for the right amplitudes seems to be not the detailed structure
of the Einstein equation, but just its local character in spacetime.

In the remainder of this lecture I would like to survey some of the progress that
has been made in constructing a theory of causal sets along the lines I have just
indicated. To be consistent with the historical scheme I advocated earlier, I ought
to spend all of my time discussing kinematics; in fact I can not resist talking a little
bit about dynamics as well. But perhaps that is more than excusable in the present
case, because the lack of clearly relevant experimental or observational evidence
to guide us, means that we really will have little indication whether we have been
traveling in the right direction until we reach the realm of dynamics proper.

From Discrete to Continuous

Logically, the first task of causal set kinematics should really be to verify that
it is possible, even in principle, for such an elementary structure to give rise to
a Lorentzian manifold in some suitable approximation. Because the whole theory
would be stillborn were it not true, we call this belief the “Hauptvermutung”,
after a conjecture that at one time was thought to be central to the theory of
manifolds (and turned out to be completely false!). In order to see in what way we



could formulate a conjecture of this type, let us return to the basic correspondences
involving volume and causal precedence from which the causal set hypothesis sets
off. In effect these correspondences are telling us what it should mean for a manifold
M with Lorentzian metric g to approximate a given causal set C, and the criterion
they embody might be expressed as follows:
The manifold (M, g) “emerges from” the causal set C iff C' “could have
come from sprinkling points into M at unit density, and endowing the
sprinkled points with the order they inherit from the light-cone structure
of g.”

(Here unit density means with respect to the fundamental unit of volume, which is

unknown as yet, but expected to be around the “Planckian” value of 10~13%m3

sec.)

Actually, I probably should have attached the qualifier ‘modulo coarse-graining’
to the words ‘could have come’, because one probably would expect realistic causal
sets to be rather chaotic on scales so small that only a relatively few elements are
involved. Such a “microscopically rough” causal set would not be strictly embed-
dable in any continuum spacetime, but some appropriately “averaged” or “coarse-
grained” version of it might be. In fact the notion of coarse-graining appears to
be important in its own right; for example effective topology will not in general be
preserved by coarse-graining, and this can give a precise meaning to otherwise elu-
sive notions such as “scale-dependent dimensionality” and “spacetime foam.” (We
will encounter a small example of this later). For simplicity, however, let me ignore,
henceforth, any need for coarse-graining in order to gain embeddability.

Now if we interpret sprinkling to mean random generation of points according
to a Poisson process in M then we can actually prove a limiting version of the
Hauptvermutung °. Namely let C; be the result of one such process and let Cs, Cs,
etc. be the results of sprinkling in additional points at ever higher densities (i.e. we
are imagining the fundamental length to go to zero). Then C; C Cy C Cj... ., there
is a well defined sense in which the limit can be taken, and we have with probability
one that

(M,g) = lim Cj.
j—oo
This theorem is encouraging, but in reality no such limiting process can occur since
the fundamental volume is small but not zero. Luca Bombelli has made some
progress in this direction, but difficulties remain, even in knowing how to formulate
the desired theorem precisely®. For now, let me just indicate the kind of result we
would hope for. Let C be a causal set and let f : C — M and f' : C — M’ be
faithful embeddings (i.e. embeddings which are sprinkling-like according to some



suitable criterion) of C into (M, g) and (M’, g'). Then there exists an approximate
isometry h : M — M’ such that f' = ho f.

Assuming — as seems very likely — that causal sets do possess a structure
rich enough to give us back a macroscopically smooth Lorentzian geometry, it is
important to figure out how in practice one can extract geometrical information
from an order relation. But before we can speak of a geometry we must have a
manifold, and the most basic aspect of a manifold’s topology is its dimension. So
an obvious first question is whether there is a good way to recognize the effective
continuum dimension of a causal set (or more precisely of a causal set that is
sufficiently “manifold like” for the notion of its dimension to be meaningful). In
fact two workable approaches exist, and I would like to describe each of them for
you, concentrating, however, mainly on the second one.

Flat Conformal Dimension

The first approach relies on the existence of families of relatively small causal
sets which can serve to characterize the dimension of any Minkowski spacetime via
embedding. Since in this case, the number of embedded points is small, one cannot
speak meaningfully of their density in the “target” Minkowski space, so we will
require only that an embedding induce the correct order relations on the embedded
points, omitting any requirement that they be “distributed uniformly with unit
density”.

To get an idea of what kind of causal sets can characterize dimension in such
a manner, take a look at the prototypes for dimensions 1 through 3 shown in figure
2. It is obvious that the first one will embed in M! but not in M° (where M¢ is
Minkowski space of d-dimensions); and it is equally obvious that the second one
will go into M2 but not into M!. Similarly the third one will pretty clearly embed
in M3 (think of the diagram as a perspective drawing), and almost as clearly not
embed in M2, as can be rigorously proven with a little trial and error. Now it
turns out that there exist, for each spacetime-dimensionality d, analogous causal
sets which will embed in M¢? but not in M?1, and I would like to take a moment
to describe how this comes about.

Perhaps the most natural guess for such a causal set in dimension d would be
the so-called “binomial poset” By, which can be realized as the set of all subsets of
{1,2,3...,d} ordered by inclusion. This poset has 2¢ elements and appears, when
depicted in the manner of figures 1 and 2, as a d-dimensional cube balanced on
one corner. (In particular the causal sets of figure 2 are essentially By, By and Bs,
except that the maximum element has been left off of B and both the maximum



Figure 2. Three simple dimension-characterizing causal sets

and minimum elements off of Bj.) Just as one might expect, it turns out that By
will not embed in M4~! but unfortunately it is not clear (for general d) that it will
go into M? either!

However, by deleting certain relations from B, one can remove the impediments
to this last embedding, and thereby acquire causal sets capable of characterizing
arbitrarily great spacetime dimensions’~%. The particular family I will discuss °
has for its representative in dimension d the poset P; made by retaining from By

only those relations embodied in the following rule:
S1 <85 <= 5; CSy and |S1| <1or |Sg| >d—1.

The proof that, indeed, P; embeds in M¢ but not in M?~1 relies on the “trick” of
representing an embedded causal set by its “shadow” on a spacelike hyperplane H
lying entirely to its past. These shadows (the intersections of the past lightcones
with H) are spheres, and the order relation < becomes the relation of inclusion
for them. In order to show that P; will embed in M?%, one thus needs to find a
corresponding set of spheres in R%~1, and such spheres can be constructed explicitly.
To prove that such a spherical realization does not exist in R%~2, one uses Radon’s
lemma, which asserts that d points in R?~2 cannot be configured in such a way that
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the convex-hulls of disjoint subsets of the points remain disjoint in all cases. (For
example, four points in R? form a quadrilateral, and the two diagonal-segments
must meet.) Now suppose that spheres realizing P; could be found in R4~2. One
shows that the minimal elements of Py (i.e. the elements {1}, {2}, ... {d}) can
be realized as single points (spheres of radius zero), and that, given any disjoint
subsets A, B of these points, there exist corresponding spheres S4 and Sp such
that S4 includes A but excludes B, and vice versa. This implies that hull(A) is
disjoint from hull(B) in all cases, contradicting Radon’s lemma.

To my mind, the most surprising suggestion to emerge from the search for such
“dimension-characterizing causal sets” is that the binomial poset Bg (and therefore
all subsequent B,,) may not be embeddable in M¢ for any d at all. The evidence
for this rests on the facts that, on one hand, embedding is either possible in M®
or impossible altogether®, and on the other hand, symmetric embeddings in M®
already have been ruled out”. It thus seems possible that complete impossibility
could be established without too much further effort.

In the opposite direction, it is an interesting question whether one can also
derive dimension-characterizing causal sets from B,, by adding relations instead of
removing them. In particular one can map the cube representing B,, into M" in
such a way that all the edges become null, and add in the new relations thereby
induced to obtain a new causal set D,,. If, as I would conjecture, D,, will not embed
in M"~!, then it has the advantage over P, of admitting a much more regular
embedding into M"™, making it more natural to use as a dimension indicator in the
non-flat case (see next paragraph). In addition, this ability to embed regularly fits
in nicely with a potential application which I will just mention, since it has hardly
been explored: the possibility of constructing an analog of cubical homology for
causal sets by using the D,, as building blocks.

The notion of dimension that results from considering embeddability in Min-
kowski space may be called “flat conformal dimension”, because it would be insen-
sitive to arbitrary conformal changes in the flat metric on M¢?. It does not directly
apply to the kind of very large causal set we are typically interested in, because
we certainly do not want to limit ourselves to the case where the continuum ap-
proximation to the causal set in question is free of curvature. On the other hand
it is true by definition that any continuum manifold is flat on small scales, so it
would be natural to try to extract the desired dimensional information by looking
at suitable small subsets of our causal set. If among them we found instances of
(say) Py with all values up to some maximum d, then we could conclude that the
effective continuum dimension of our causal set was this maximum d.
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Statistical Dimension

The second method of recognizing dimensionality that I referred to has a sta-
tistical character; and, since it yields dimension values which need not be integers,
I will call it ‘fractal’. Unlike the method just discussed, this one uses volume infor-
mation as well as conformal information, and seems to be somewhat more efficient
for that reason. Actually, one can imagine several distinct methods of this ilk, all of
which involve counting suitable substructures of a given Alexandrov subset of our
causal set. The specific one I will describe (suggested independently by Myrheim
and Meyer) is the only one which has been fully analyzed analytically, as far as I
know.

Given an Alexandrov subset [a, b, the simplest thing to count is the number
N of its elements, and the next simplest is probably the number R of (nontrivial)
relations it contains, i.e. the number of pairs of (unequal) elements u,v € |[a,b]
such that u < v. If the full causal set can be faithfully embedded in M? then N
and R can be estimated by forming expectation values with respect to a Poisson
process taking place within M?. I will describe this in a moment, but first let me
summarize the situation.

First notice that, by Lorentz invariance, the expectation values of R and N can
depend only on the volume in M? of the Alexandrov neighborhood (”double light
cone”) bounded by a and b, and, of course, on the dimension d itself. Forming a
ratio to make the volume drop out gives us

R 3d(d/2)!
N2 T 17(3d)2)!

Because the right-hand-side is a monotonically decreasing function of d, this equa-
tion can be inverted to associate a unique “Myrheim-Meyer fractal dimension” to
each value of the ratio R/N?2. For suitable small Alexandrov subsets of a “manifold-
like” causal set, this fractal dimension should average out to the true continuum
dimension. For larger ones it would be necessary to take the curvature into account
(c.f. 10).

Now let me go into more detail about how the mean and variance of R may
be found analytically. To that end, consider a Poisson sprinkling of points into
M¢<, and let us select a pair of sprinkled points, a, b, such that the corresponding
interval or “Alexandrov subset” [a,b] contains precisely N elements. To find the
mean value < R > we may imagine dividing A := J*(a) N J~(b) C M¢ into very
small subregions dx, and defining for each pair of such subregions, the “Boolean”
random variable x(dz, dy) which equals one if and only if z < y and both dz and
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dy are occupied by sprinkled points. (In the limit of infinitesimal subregions, we
may ignore the possibility that either dz or dy holds more than one point.) With
these definitions we have (in the limit)

R = Z X(dl‘,dy),

dz,dy

whose expectation-value yields immediately

<R>= Z < x(dz, dy) >,
dz,dy

a result which owes its simplicity to the fact that summation commutes with
expectation-value, even in the presence of correlations.

Now the expectation of x(dx, dy) is just the probability that it equals 1, which
in turn is just the product of the probability P(dz occupied) with the conditional
probability P(dy occupied | dz occupied); hence

N N-1_ N®HN-1
whence, setting ¢ = R/N(N — 1), we have
<R> dx dy
- Stz _ [ 2,
SO ENN oD /VV 2

<Y

Thus the computation of < ¢ > reduces to the evaluation of the integral Is, which,
from the above derivation, may be described as (half) the probability that a ran-
domly chosen pair of points in A are related to each other. Evaluating I5 then leads
to the result quoted above:

<R> 3 (3d/2\ "
= — = — ::I
<= NN 4( d ) 2

where the parentheses denote a binomial coefficient. (See 7 for the evaluation of a
more general class of integrals of this type, two of which we will use below.) Notice
that I3(d) is indeed a monotone function of d, allowing us to associate a unique
(but in general fractional) d to each value of the ratio ¢.

But how reliable, for a given N, can we expect this estimate of dimension to
be? To answer this question we need the standard deviation of ¢. In fact, it is more
convenient to work with In ¢ and its standard deviation Aln¢ ~ A¢p/¢p = AR/R.
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Then, in terms of the derivative of In I3 with respect to d (call this derivative f(d)

for short), we can write the uncertainty in the dimension estimator as

_Almg AR/R AR
fd  f(d R’

where I have used the easily verified fact that f(d) is of order unity (varying in fact
between —0.55 near d = 1 and —0.955 for d — o0). Our estimated d can thus be
regarded as reliable when the standard deviation of R is much smaller than R itself:

AR < R.
In order to evaluate AR we may once again express R as the sum

Ad

R=) x(dz,dy) =a+b+c+---,

where each of the letters a, b, c... stands for one of the Boolean variables y. It
follows immediately that

R—<R>=(a—<a>+(b—<b>)+---,
whence

(R—<R>)*=> (a—<a>)’+) (a— <a>)(b— <b>).
[ a#b

The first term’s expectation-value (which just corresponds to the ordinary “y/n-type
fluctuations”) is easily evaluated:

<(a—<a>)?>=<a’>-<a>=<a>—-<a>%
which implies

<> (a-<a>’>=) <a>-» <a>>=<R>.

Here I have used in the upper line that a? = a (since a = 1 or 0) and in the lower
line that < a >2 is small of quadratic order, whence neglectable.

Most of the contribution to AR comes from the a # b sum, however, which
registers the enhanced fluctuations engendered by the mutual correlations among
the variables x(dz, dy). Its expectation-value

Y l<ab>—<a><b>]
a#b
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contains three types of contributions, depending on how the subregions involved in
a = x(dz,dy) and b = x(dz, dw) overlap. In the “generic” case (7) z, y, z, w are all
distinct, but they can also (i) form a 3-chain (if y = z or x = w), or (#i) form a
“V” (if . = z) or a “A” (if y = w). Take for illustration the third case, with z = z:
a = x(dz,dy), b = x(dz,dw). For the mean value of ab we then find

NN-1N-2
b >= P(dx,dy, dw all ied) = —————
< ab > (dz, dy, dw all occupied) AT 7 dzdydw,
while for < a >< b > we have (as earlier)
NN-—-1 NN -1
b>= (= dzdy)(— d
<a><b> (V 7 xy)(V zdw),

which is proportional to dz2dydw and therefore negligible in the limit dz — 0. The
net contribution of this case to AR? is therefore

N(N —1)(N —2)
V3

Y < x(dw, dy)x(dz, dw) >= J3,

dz,dy,dw

where J3 is the integral

7. = [dzdydz
SO B VAR VA Ve

taken over all triples of points such that z < y < z. Handling cases (i) and (%)
similarly, and combining results, we find for the variance of R

AR?* = N(N = 1)[(2N — 4)(Js + I3) — (4N — 6)12 + I,],

where I3 is the triple integral formed like J; but with z,y, z forming a 3-chain
instead of a “V”: x < y < z. (Incidentally, the evaluation of the integrals I3 and J3
reveals a peculiar identity between them, which—if it could be generalized—might
aid in evaluating other integrals of the same sort. The identity is I3 = I5J3.)

For large N, AR thus goes like N3/2, with a coefficient depending on dimen-
sion. If d > 1 as well, we can estimate the integrals I, I3, JJ; using Stirling’s
approximation (all three integrals being generalized binomial coefficients) to obtain

4
AR? ~ 3 Vrd474N3,
from which (dropping a prefactor proportional to d-1/ 4)

AR 1 ()
R YN \16)
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Hence

27\ ¢
AR< < R> if N>><E> .

For large d this is a big number, but not as big as the 2¢ elements required to
characterize flat conformal dimension by means of the special causal sets described
earlier.

Computer tests of this method of recognizing dimension '° show that it works
reasonably well in low dimensions (d = 2,3,4), with the computed dimension con-
verging rapidly to the true one as the number of sprinkled points becomes larger
than about 300-400, the results being in general agreement with the error analysis
given above. Figure 3 shows a typical case, in which a thousand points were sprin-
kled randomly into an Alexandrov neighborhood in M3, and a value of d computed
for each interval within the resulting causal set. The plot depicts the distribution
of the resulting values of d as a function of the size of the interval. Many similar

pictures may be found in reference °

, including an especially interesting example
in which the starting spacetime was a “Kaluza-Klein cylinder” of 141-dimensions.
In that example one sees clearly how the effective spacetime dimension falls grad-
ually from 2 down to 1 as the size of the interval in question increases. In effect,
one sees how coarse-graining can induce “dimensional reduction”, and how such
scale-dependent dimensionality (and more generally, topology) becomes a perfectly
well-defined concept in the context of causal sets.

Before leaving the topic of dimension, I want to mention three of the other possi-
ble “statistical” methods I alluded to earlier. So consider once again our Alexandrov
neighborhood A in M? of height T and volume V' = [(7r/4)% /d (%114, and con-
taining N randomly sprinkled points comprising an interval [a, b] in the larger causal
set. The “midpoint dimension” of [a, b] (perhaps the notion closest in spirit to the
Hausdorff dimension of a metric space) would be defined as d = logy(N/N7), where
Ny = |[a, 2]| (say) is the number of elements contained between a and a “midpoint

»

element” z, which one might take to be the middle element in a longest chain from

a to b, or alternatively (cf. ') an element that maximizes min{|[a, 2]|, |[2,b]|} (With
‘| - |” denoting cardinality, as earlier). One might also try to define a dimension by
relating N (which is effectively an estimate of the volume of A) to T, as estimated,
perhaps, in terms of the length of a longest chain from a to b (cf. below). Finally
there is the intriguingly simple definition d = In N/Inln P, where P is the total
number of chains (or of paths) from a to b. There is good reason to believe that P
has the large N behavior P ~ e [where a = a(d)], which if true would make this

last formula an asymptotically valid estimator for large N (inasmuch as N oc T¢
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Figure 3. Scatter plot of the fractal dimensions of the intervals in a thousand-
element causal set sprinkled into M3.
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for all N). To put any of these methods on a sound analytic basis, one would need
better control over random variables like the length of the longest chain from a to
b, the total number of such chains, and the total number of paths from a to b (a
path being defined as an unrefineable chain).

Length

Beyond recognizing dimensionality, there is the problem of extracting infor-
mation about global connectivity (i.e. topology), and ultimately about the metric
tensor itself. Concerning the latter, one may ask in particular how to estimate
the geodesic distance between two causal set elements (assuming as always that
the causal set resembles a continuum geometry (M, g).) Thus, let z and y be el-
ements of the causal set C for which x < y. The most obvious way to define
a “distance” from z to y is just to count the number of elements in the longest
chain joining them, where a joining chain is by definition a succession of elements,
x <21 < 22 < 23... <y. Clearly a maximal path in this sense is analogous to a
timelike geodesic, which maximizes the proper-time between its endpoints.

Now, how does length defined in this way compare to geodesic length? Once
again, most of the work has been on causal sets sprinkled into Minkowski space, but
the results there are very encouraging. For maximal chains involving up to about
twenty links, David Meyer found empirically that there seems to be a quite good
proportionality between the Minkowski separation T of two sprinkled points, and
the number of links L in the longest chain joining these points. What’s more!!, in
the asymptotic limit of large 7', this proportionality becomes exact: L = ¢T'. The
constant ¢ depends on the spacetime dimension and is not known exactly, although
fairly tight bounds on its value are available.!! If proportionality holds up when
curvature is present, we will have a way to extract timelike distances directly from
the order relation <. For spacelike distances, no equally direct method appears to
exist, but there would seem to be a good prospect of getting them indirectly from
the ensemble of timelike ones.

There are also other ways to deduce geometrical information from order in-
formation. For example, the type of counting technique we used to define fractal
dimension will, in certain situations, yield the value of the scalar curvature, and
in other situations the radius of the “internal circle” of a Kaluza-Klein vacuum-
metric”10. However all these methods have been developed only on the assumption
that the causal set is faithfully embeddable in some continuum spacetime. What
we still lack is a way to judge directly whether or not this is the case; i.e. whether
the causal set can give rise to any Lorentzian manifold at all.
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Counting Problems

Before leaving kinematics and turning briefly to the question of dynamics, I
would like to describe some progress that has been made on what one can call
“counting problems”. We have already seen how geometrical knowledge can be
gleaned just by counting suitable substructures, but I think such enumeration is
likely to be important for another reason. I think it furnishes numbers in terms
of which the amplitude entering into the sum-over-histories (or better, over causal
sets) could be defined. In any case let me mention some counting problems whose
solution is known, as well as some which are clearly important, but which have not
been solved so far.

We have already encountered the notion of a chain in connection with the def-
inition of timelike length. A natural question is how many chains exist between
two specified causal set elements. For a causal set sprinkled into two-dimensional
Minkowski space it is possible to evaluate in closed form the expected number of
chains joining two sprinkled points separated by the time lapse T, and one finds
<chains> = Iy(v/2T), where Iy(z) =Jo(iz) is a so-called modified Bessel function
of the first kind. Notice in connection with this formula that mathematicians have
defined ‘chain’ to mean any totally ordered sequence of elements, even if the se-
quence “skips over” intermediate elements. Thus, every subset of a chain is also a
chain, and only a mazimal chain need consist of “links” in the sense of unrefineable
two-element chains.

One can also ask for the number of chains of a fized length occurring as subsets
of a causal set sprinkled into an Alexandrov neighborhood of height T in M¢?. In
this case the expected number < C} > of k-element chains is known as a function
of T for all dimensions d. Also known is a generalization of this formula to the case
of constant spacetime curvature”-10.

In this connection, I might mention some mysterious identities that have been
found to relate certain expectation values of the sort we have been considering”-!°.
In M? we have that < V >< R >=< C3 >< N >, where ‘V’ stands for the
number of three-element subsets such that one element precedes the other two,
and ‘C3’ stands for the number of 3-element chains. This identity (equivalent to
the relation J3lo = I3 mentioned earlier) relates the numbers of certain specified
sub-causal-sets of a sprinkled causal set, and is rigorously true in any dimension. A
similar, but so far only empirical identity has turned up in M? in computer work by
Jorge Pullin and Eric Woolgar; it states that (L)? = 2(W)(N), where now L is the
number of links (unrefinable two-element chains) and W the number of “V’s” each
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of whose “arms” is a link. (The letter ‘W’ stands for ‘wedge’, and such “wedges”
will be mentioned again later.)

It would be easy to pose many similar counting problems holding equal interest
to those just indicated, but I'm sure several such will occur to you without my
mentioning them explicitly. However, I would like to mention here a slightly different
enumeration problem, one with obvious bearing on the question of how, in the
“classical limit of causal set theory”, a smooth geometry emerges at large length
scales from the underlying discrete order. That is the problem of determining the
total number of distinct causal sets which can result from sprinkling N points into
a given Lorentzian manifold (M, g). Clearly this is related to the question of how
far a given sprinkling can be perturbed without changing the induced order, and
it is possible to base a “guesstimate” of the number of sprinklings on this kind of
consideration. Still needed, is a better justification of this, or some other estimate,
and a refinement of it which would clarify how the number of distinct sprinklings
depends on geometrical parameters of the region in question, like its volume, its
curvature, and the shape of its boundary.

Amplitudes

There are some other kinematical issues which I would have liked to discuss
had there been time, especially coarse-graining and the related possibilities of scale-
dependent dimensionality, emergent matter fields, and the like. Rather than spend
my remaining minutes on such topics, however, I would like to report on some
intriguing results and preliminary work concerning the dynamical stage of causal
set theory.

As I said earlier, the sum-over-histories framework appears to be the most nat-
ural point of departure for anyone trying to develop a plausible “quantum equation
of motion” for causal sets. In this framework each causal set C would carry an
amplitude A(C); and dynamics would be contained in the amplitude-function A(-),
together with the combining rules telling us how to use the amplitudes to construct
meaningful probabilities. Without yet possessing these latter rules in their final
form, we can still investigate some of the consequences of particular choices of A(-),
and thereby try to gain insight into what features an adequate choice would have
to have.

Consider, for example an amplitude of the form A = exp(i3R), R being the to-
tal number of relations, as before. This looks like a familiar path-integral amplitude
(with trivial “measure” and) with R and f playing the roles of “classical Action”
and “coupling constant” respectively. [Rescaling 3, one might say that the (fractal)
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dimension was being used as the Action, in this case!] To prevent the amplitude-
sums from diverging, one can take the total number of causal set elements to be
a fixed integer N. Now, if we were to go over to the corresponding “statistical
mechanics” problem by continuing 3 to imaginary values, then we would be dealing
with a random causal set of N elements, and with probability-weight given by the
“Boltzmann factor” exp(—BR). It happens that just this problem has been studied
in connection with a certain “lattice-gas” model 12.

Actually what was studied was not exactly the “Gibbs ensemble” given by the
“Boltzmann factor” e, but instead the corresponding “micro-canonical ensem-
ble”, in which R is fixed and every causal set with that R (and with N elements) is
weighted equally. The first result of interest is that, in the “thermodynamic limit”,
N — o0, at least two, and probably an infinite number, of phase transitions occur
as R/N? is varied (corresponding to varying SN? in the “canonical ensemble”).
For small values of this parameter, the most probable causal sets possess only two
“layers” (i.e. no chain has more than three elements), and the phase transitions
mark thresholds at which successively greater numbers of layers begin to contribute.
In some very general sense the causal set is thus becoming more manifold-like with
each such transition, but so far there is no evidence that genuine manifold behavior
sets in for any value of the parameter.

One noteworthy event that accompanies the 2-level to 3-level phase transition
is a spontaneous breaking of time-reversal symmetry. In the 2-level phase the most
probable configurations look similar to their T- (or better CPT-) reversals, but
in the initial 3-level phase the causal sets of high-probability have very unequal
numbers of elements in their top and bottom layers. I obviously would not want
to claim that this effect was at the root of the cosmological time-asymmetry, but it
does demonstrate the possibility that something of the sort could ultimately emerge
from a better understanding of causal set dynamics.

The other preliminary results I want to report on here concern not the causal

“scalar field” living in a fixed (or “back-

set’s own dynamics, but rather that of a
ground”) causal set. Such additional degrees of freedom might or might not be
necessary to incorporate “matter”, but in either case, their study should serve to
clarify issues like locality which I would expect to influence critically the choice of
amplitude for the causal set itself. So let C be a given causal set, and let ¢ be a
real-valued function on C, or in other words a “real scalar field”. One would like
to discover an Action S(¢), defined purely in terms of ¢ and the order <, which in
appropriate situations will reproduce the known behavior of a quantum scalar field

in curved spacetime.
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In what we have done so far'3, we have limited ourselves to causal sets sprinkled
into 2-dimensional Minkowski space M2, and searched for a function S(-) which
would approximately reproduce the Action functional of a free scalar field. To that
end, we considered within C both links and “wedges”. (Recall that the latter are
triples of elements xg, 1, zo such that the pairs zog < 1 and xg < x5 are both links,
a structure I referred to earlier in connection with counting problems.) Letting ¢;
denote ¢(z1), etc., I can form the quadratic expression Sy = — > (1 —do) (P2 — do)
as a sum over all wedges, and in the same way Sp = — >_(¢1 —¢)? as a sum over all
links. We chose the first expression because it resembles the square of the gradient
expressed in u-v-coordinates, if you take the two links of the wedge as rightward-null
and leftward-null. The second expression also resembles the continuum Lagrangian
to some extent, but clearly can’t be correct by itself since it can only have one
sign. Now one can argue that there should exist some linear combination of Sy
and Sy, that will yield (on average) the correct Action for arbitrary linear ¢. What
is surprising, however, is that the simple difference S = Sy — St appears to be the
combination that works (modulo an overall normalization depending on N). The
tests are still unfinished, but for the three test fields ¢ =t,¢ = x, and ¢ =1 + =z,
we find errors in < S > of about 15% for 500 points and 6 runs, and of about 1%
for 10,000 points and 10 runs.

For some nonlinear functions, including ¢ = z? and ¢ = sin(t), the results
are again not too bad, but for more rapidly oscillating ones like ¢ = sin(5¢) they
are decidedly not too good, and they don’t get noticeably better as the number of
sprinkled points is increased. (Here the points are sprinkled into an Alexandrov
neighborhood whose height in the ¢-direction is unity.)

In fact the difficulty was to be expected as a manifestation of a very general
conflict among locality, discreteness, and Lorentz invariance that I alluded to earlier.
What happens in this case is that the links and wedges, which we would like to be
rather “small”, can instead be “very long and skinny”. For example, a link which
in one reference-frame looks to be purely timelike and of small size, will in a highly-
boosted frame appear to be very stretched out and almost null. By including such
links (and the analogous wedges) in our expression for S(¢) we make S depend on
very large finite differences instead of only on small ones that could furnish a good
approximation to the gradient of ¢. In fact Sy alone would in some sense already
have been a good approximation to S had not this problem been present, and
one can probably understand the effect of subtracting S as a partial cancellation
of the contribution of the “long skinny wedges”. What is needed, then, is a full
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cancellation of their contribution, leaving behind an expression for the Action that
one could expect to be accurate for a much wider range for test functions.

In fact, there is at the moment, the prospect of obtaining such a cancellation by
using “diamonds” instead of “wedges”; and there is also a very promising simpler
approach, which, however, works most naturally only in in dimensions two and four.
But the main point I want to make here is that locality in this sense might be the
lodestar leading us to an appropriate dynamics for the causal set itself, and not just
for whatever fields may inhabit it. By achieving locality for “matter” fields like ¢ we
could of course acquire a new type of “random lattice” approximation to quantum
field theory in curved spacetimes (including as a special case Minkowski space itself
of course). But more importantly for our present purposes, we might then begin to
understand how to build local amplitudes for the causal set itself. Indeed it could
even turn out that the resulting ¢-dynamics would directly yield a useful effective
causal set amplitude in the manner of “induced gravity”, that is, via “integrating
out” the ¢-fluctuations in the sum-over-histories.

That is about all it seems appropriate to say on dynamics for now, but be-
fore concluding, I want to throw out a quite speculative idea that illustrates how
the assumption of a discrete substratum for spacetime can suggest otherwise unex-
pected routes to the resolution of basic puzzles like the smallness of the observed
cosmological constant. Suppose, in fact, that this smallness of A were a statistical
effect due to the very large number of elements making up the relevant portion of
the universe. Then we might expect whatever cancellations were responsible for
this smallness to take place not exactly, but just with some statistically imposed
accuracy, and this suggests the formula

Am 2

/N7
N being the number of elements in question. Taking the fundamental volume to
be of Planck magnitude, and estimating the 4-volume of the observable universe
between the “big-bang” and the present epoch, yields an N of the order of 10240,

0—120

Then A would be somewhere around 1 in natural units, which (coincidentally?)

is currently the largest value not yet ruled out by astronomical data.
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