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This is an on-going set of learning notes for geometric and topological techniques in data analysis.
Some key words include manifold learning and topological data analysis.
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1. Clustering

There is abundance of literature on various clustering techniques for data. This section begins
by describing two (related) recently proposed methods for clustering data coming from intersecting
surfaces, and concludes with some remarks on topological clustering.

1.1. Spectral clustering basics. These notes are from the tutorial by Luxburg [8].
Many approaches to clustering data X ⊂ RN seek to build a weighted graph G = (X,W ), where

each weight wij is nonnegative and denotes some measure of “closeness” between vertices xi and xj ,
and apply standard graph clustering algorithms. The general problem of graph clustering is to find
a partition of G into subsets C1, . . . , Ck such that wij is “small” whenever vertices xi, xj belong to
different clusters and wij is “large” whenever xi, xj belong to the same cluster.

Spectral clustering is a popular method based on the graph Laplacian. Its implementation involves
standard linear algebra and can be motivated from several points of view.

There are several related definitions of a graph Laplacian, each of which has an associated spectral
clustering algorithm. Let D be the diagonal matrix of degrees d1, . . . , dn, where di =

∑
j wij .

The (unnormalized) graph Laplacian is

L = D −W.

Then L is positive semidefinite since

〈Lf, f〉 =
∑
i,j

wijf
2
i −

∑
i,j

wijfifj =
1

2

∑
i,j

wij(fi − fj)2,

1
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From this it is not hard to deduce that

Lemma 1. The number of connected components of the graph is dim kerL. Moreover, kerL is
spanned by the indicator functions of the components.

Suppose now thatG has k connected components and we want to partition the vertices {x1, . . . , xn}
into k clusters. In this case the clusters should be precisely the connected components.

The basic unnormalized spectral clustering algorithm, which dates back to the 1970’s, works as
follows:

(1) Compute eigenvectors x1, . . . , xk ∈ Rn corresponding to the k smallest eigenvalues of L, and
form the n× k matrix Y = [x1, . . . , xk].

(2) Apply k-means clustering to the rows of Y . Call the rows y1, . . . , yn and clusters C1, . . . , Ck.
(3) Assign xi to cluster j if yi ∈ Cj .

k-means clustering refers to the following problem: given points X ⊂ RN and a positive integer k,
find a partition of X into k clusters S1, . . . , Sk which minimizes

k∑
i=1

∑
y∈Si

‖y − µi‖2,

where µi = 1
|Si|
∑

y∈Si
yi. An iterative algorithm is common used.

More recent variants have been developed based on normalized graph Laplacians:

Lsym := D−1/2LD−1/2 = I −D−1/2WD−1/2 (Ng, Jordan, Weiss 2002)

Lrw := D−1L = I −D−1W (Shi and Malik 2000).

Remark 2. Spectral clustering works exactly when the graph has k connected components and we
look for k clusters. It is also stable under small perturbations. However, its main attraction is that
it boils down to a standard linear algebra problem.

Each of the following manifold clustering methods ultimately applies spectral clustering to the
graph (X,W ) with judicious choice of weights.

1.2. Local PCA. “Spectral clustering based on local PCA” [Arias-Castro, Lerman, Zhang] [1].
Clustering for surfaces in Euclidean space. This is basically a simplified version of previous

algorithms proposed by Goldberg/Kushnir but with proofs.

1.2.1. Problem. Given data points x1, . . . ,xN ∈ RD which are assumed to concentrate near smooth
d-dimensional surfaces S1, . . . , SK ⊂ RD, assign each point to one of K clusters C1, . . . , CK such
that each cluster consists of all the points from one surface.

1.2.2. Algorithms. Parameters: neighborhood radius r > 0, spatial scale ε > 0, covariance/projection
scale η > 0.

Idea: build a similarity graph on the data points so that two points xi and xj are “close” if both
of the following hold:

• xi and xj are close in the Euclidean sense: ‖xi − xj‖ < ε for some distance threshold ε.
• The estimated tangent spaces of the surfaces at xi and xj look nearly the same.

Tangent spaces are compared as follows. Choose a parameter 0 < r � ε. For each xi, form the
sample covariance matrix Ci for the points in the ball Br(xi) of radius r with center xi. Assuming
that the samples are roughly uniform, one expects ‖Ci‖ ≈ r2. The discrepancy between tangent
spaces at two points xi, xj is measured by comparing directly the covariance matrices, or by com-
paring the orthogonal projections Qi onto the space spanned by the eigenvectors corresponding to
the largest eigenvalues of Ci. The latter measure is less sensitive to the scaling of the data (e.g.
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points on a line near a boundary will have smaller covariance matrices but identical projections as
interior points).

The comparison of tangent spaces becomes relevant near an intersection of surfaces. Assuming
that the surfaces bend much more slowly than the angle of intersection, two points xi and xj in a
neighborhood of an intersection should come from the same surface iff the tangent spaces at those
points have small relative angle (as measured by comparing the covariance matrices or the associated
orthogonal projections).

The authors propose three related algorithms and analyze the first two:
Algorithm 2 (analyzed):

• For each xi, discard each xj ∈ Bε(xi) such that ‖Ci −Cj‖ ≥ ηr2. The aim of this step is
to temporarily remove points near intersections that could mess up the following

• Define the affinity matrix

Wij = 1{‖xi−xj‖<ε}1{‖Ci−Cj‖<ηr2},

and determine the connected components of the resulting graph.
• Group each of the removed points with the closest connected component.

Algorithm 3 (analyzed):

• Let Qi be the orthogonal projection onto the span of the eigenvectors whose eigenvalues
exceed

√
η‖Ci‖, and determine the connected components of the graph with affinity matrix

Wij = 1{‖xi−xj‖<ε}1{‖Qi−Qj‖<η},

Algorithm 4 (the one actually implemented but not analyzed):

• Preliminary reduction: choose an r-sparse subset Y = {yi}; idea is that without sampling
at two different scales (different values of r), the covariance matrices within a fixed ball yield
little additional information.

• For each yi, let Ci be the covariance matrix for the points in Br(yi), and Qi be the orthog-
onal projection onto the first d eigenvectors of Ci.

• Construct the similarity graph on Y with affinity matrix

Wij = exp
(
−‖yi − yj‖

ε2

)
exp
(
−‖Qi −Qj‖

η2

)
,

and apply spectral clustering to obtain clusters C1, . . . , Ck
• Group each xi with the cluster with the nearest mean.

Remark 3. Using soft cutoffs (thus making everything weakly connected) makes the algorithm
more robust. With hard cutoffs, points falling just outside the prescribed thresholds would form
their connected components.

Remark 4. How should the parameters be chosen? The authors set the spatial scale ε and projection
scale ηas follows:

ε = max
i

min
j 6=i
‖yi − yj‖,

η = median{‖Qi −Qj‖ : (i, j) : ‖yi − yj‖}

The parameter r is chosen by hand in each case and should be smaller than ε. It should be small
enough so that the surfaces look nearly flat in a ball of radius r, but also large enough so that
there are enough points in a ball of radius r to compute tangent space approximations. Further, the
distance parameter ε should be small enough so that each surface looks relatively flat in a ball of
radius ε. Automatic tuning of parameters still remains a challenging problem.
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Remark 5. These algorithms focus mainly on correctly resolving intersections. Two nearly parallel
surfaces S1 and S2 that are within distance ε of each other are not distinguished since their estimated
tangent spaces will be very similar. The “geodesic angle filtering” criterion of Lerman et. al. would
address this issue.

1.2.3. Theoretical results. Let S1, S2 be compact C2 d-submanifolds of RD with reach ≥ r. This
means that for each x in the r-tubular neighborhood of Si, there is a unique closest point of Si to
x. The reach provides an upper bound on the curvature of Si.

Assume iid samples X = {x1, . . . , xn} have the form xi = si + zi, where si is sampled uniformly
with respect to the surface measure of S1 ∪ S2 and zi is uniform over the ball of radius τ > 0(the
noise level).

Theorem 6. Assume S1 and S2 intersect at positive angle such that S1 ∩ S2 has positive reach. If
the parameters τ, r, η, ε are chosen such that

η/1/C, ε ≤ η/C, r ≤ ε/C, τ ≤ rη/C,
for a sufficiently large C > 0 depending on the geometry of S1, S2, S1 ∩ C2, then

• Algorithm 2 returns at exactly two groups which correctly clusters the data points outside
distance Cr from the intersection.

• Algorithm 3 returns at least three groups such that data points from different surfaces are
not clustered together unless they are within distance Cr from the intersection.

1.3. MGM-clustering. “Riemannian multi-manifold modeling” [Wang, Slavkis, Lerman] [9]

1.3.1. Problem. Let M be a Riemannian manifold and S1, S2 ⊂ M be two (possibly intersecting)
submanifolds of equal dimensions. The submanifolds are not observed in advance. Given points
X = {x1, . . . , xn} ⊂ M which are known a priori to concentrate near each submanifold, determine
to which submanifold each xi belongs.

1.3.2. Theoretical Algorithm (TGCT). Given points X = {x1, . . . , xn}, a number K ≥ 2 of clusters,
a neighborhood radius r > 0, a projection threshold η, a distance threshold σd, and an angle
threshold σa.

For each xi:

(1) Compute the points xji ∈ J(xi, r) := B(xi, r) ∩X in geodesic normal coordinates centered
at xi.

(2) Use PCA on the points J(xi, r) (in geodesic coordinates) to compute the estimated tangent
subspace TExi

S of the underlying submanifold S. More specifically, TExi
S is spanned by the

eigenvectors of the sample covariance matrix Cxi of xji whose eigenvalues exceed η‖Cxi‖.
The number of such eigenvectors is an estimate of the dimension of S. Note however that
S might not pass through xi, but if xi is close to S then S should still look basically like a
(slightly translated) subspace

(3) Assuming that S is a geodesic submanifold, for each point xj ∈ X, xj should belong to S iff
the geodesic from xi to xj intersects TExi

S at a small angle θij , called the empirical geodesic
angle.

(4) Form a similarity graph on the points X with weights Wij of the form

Wij = 1dg(xi,xj)<σd
1dim(TE

xi
S)=dim(TE

xj
S)1(θij+θji)<σa

.

(5) Run spectral clustering on the similarity graph.

Remark 7. Since dimS1 = dimS2, the only purpose of comparing dimensions is to ensure that
points near an intersection of two manifolds S1 and S2 form their own cluster. The “practical”
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algorithm omits this comparison, which is okay so long as only a small fraction of points lie near
intersections.

Remark 8. The similarity matrix encodes the same underlying notions of “closeness” as in the local
PCA paper (Algorithm 2). The empirical geodesic angle θij plays an analogous role as ‖Ci −Cj‖
or ‖Qi −Qj‖; local covariance matrices can’t be directly compared on a manifold if the points lie
in different charts.

Remark 9. A “practical” algorithm is also formulated and implemented with technical tweaks.
Hard cutoffs are replaced by soft ones. Also, the distance component 1dg(xi,xj)<σd

is replaced by
weights Sij coming from a sparse coding problem.

Remark 10. If x ∈ S1, the geodesic submanifold hypothesis implies that for any other y ∈ S1 the
shortest length geodesic from x to y lies in S1 (so the geodesic angle θxy is zero in this case). If y
is close to S1, then θxy should still be small regardless of whether S1 is geodesic. Their “practical”
algorithm appears to work for examples where the hypothesis is violated.

Remark 11. This algorithm relies on being able to compute the logarithm map efficiently (i.e. the
inverse of the exponential map expx : TxM → M). Grassmannians, symmetric positive-definite
matrices, spheres were considered in the article.

1.3.3. Theoretical results.

Theorem 12. Let S1, S2 ⊂M be smooth compact d-submanifolds. Assume data X = {x1, . . . , xN}
are sampled from the uniform distribution on the tubular neighborhood of each Si with radius τ > 0
(the noise level). For suitable choices of the parameters r, σd, σa, η depending on τ and the geome-

try of the submanifolds and their intersection, then with probability 1 − O(Ne−CNr
d+2

) the TGCT
algorithm correctly classifies a subset X∗ ⊂ X of fraction at least 1− C(r + τ)d−dim(S1∩S2).

Remark 13 (Section 5.8 in the paper). Most of the proof considers the noiseless case τ = 0,
so that X ⊂ S1 ∪ S2, and incorporates small levels of noise τ ≤ cr, c � 1, at the very end by
simple perturbative considerations. Robustness under higher levels of noise was investigated in their
numerical experiments and the authors think their theoretical results could be improved.

1.4. Topological clustering.

1.4.1. Morse Theory. Morse Theory is mostly about understanding the topology of a manifold M
through the level sets of certain differentiable functions f : M → R. A smooth real-valued function
on a manifold M is a Morse function if it all of its critical points have nondegenerate Hessian
matrices (a Hessian matrix at a critical point is the matrix of second derivatives at that point). A
basic result of Morse theory says that almost all functions are Morse functions. Technically, the
Morse functions form an open, dense subset of all smooth functions M → R in the C2 topology.
This is sometimes expressed as ”a typical function is Morse” or ”a generic function is Morse”. The
index of a non-degenerate critical point b of f is the dimension of the largest subspace of the tangent
space to M at b on which the Hessian is negative definite. This corresponds to the intuitive notion
that the index is the number of directions in which f decreases.

Given a Morse function f , one important question is about the changes in the topology of Ma =
f−1(−∞, a] as a varies.

Theorem 14. Suppose f is a smooth real-valued function on M , a < b, f−1([a, b]) is compact, and
there are no critical values between a and b. Then Ma is diffeomorphic to M b, and M b deformation
retracts onto Ma.

It is also of interest to know how the topology of Ma changes when a passes a critical point. The
following theorem answers that question.
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Theorem 15. Suppose f is a smooth real-valued function on M and p is a non-degenerate critical
point of f of index γ, and that f(p) = q. Suppose f−1([q − ε, q + ε]) is compact and contains no
critical points besides p. Then Mq+ε is homotopy equivalent to Mq−ε with a γ-cell attached.

1.4.2. Density Clustering and Mode Clustering. This part of our notes is a re-explanation of section
2 of [10].

Let X = {x1, . . . , xn} be a random sample from a probability distribution P supported on some
subset X ⊂ Rd.

Assume P has a density p(x). Density clusters are regions in X where p(x) is large. More
specifically, the density clusters at level t, denoted by Ct, are the connected components of the
super-level sets

Lt := {x : p(x) > t}.

The set C :=
⋃
t≥0 Ct has a tree structure induced by set inclusion. This is very similar to the

perspective of looking at level sets of Morse functions.
In practice, it is common to use a kernel density estimator p̂h(x) which involves the kernel K(e.g.

Gaussian kernel) and a “bandwidth” h. To find the clusters, we choose another tuning parameter
and make a graph with the nodes being X1, ..., Xn.

Since the density clusters defined above have a tree structure, we define the density tree to be the
two-dimensional tree that keeps track of the merging of clusters as t decreases. This is completely
analogous to the changes in the topology of the level sets as we pass critical values of a Morse
function.

For another related application of Morse theory, let’s consider a different clustering method called
mode clustering. In this case, the clusters are the attracting sets for the local maxima of the
probability density function, with the flow given by the gradient flow. This gives a decomposition of
the underlying space Rd, and therefore divides our data set into different clusters according to the
modes (local maxima/critical points).

2. Data Simplification and De-noising

2.1. Dimension Reduction. The general goal of dimension reduction is to map data X ⊂ RD
from a high-dimensional space to a low-dimensional space Rd, d � D in a manner that “preserves
structure”. Principal components analysis (PCA) is the method of choice if X concentrates near a
linear subspace. However, describing data with nonlinear structure is a more delicate problem.

We briefly review some classical methods on nonlinear dimension reduction, including MDS,
Isomap and Laplacian eigenmaps. There are other important methods that are not explained here,
like LLE [6], t-SNE [5] , etc. For instance, LLE first finds weights wij such that the square of
the distance between any data point xi and the linear combination of its neighboring data points
Σjwijxj is minimized, and then finds lower dimensional images yi such that ||yi − Σjwijyj ||2 is
minimized.

On the other hand, a different method called t-SNE uses a gradient descent algorithm to minimize
the ”relative entropy” between the original data set X and its lower dimensional image Y . It is quite
different from the aforementioned local methods and appears to preserve topological features of the
data better. One interesting open question is: is it possible to derive low-dimensional embedding
methods that explicitly preserve topological features of the data? [10]

2.1.1. MDS and Isomap. Multidimensional scaling (MDS) and Isomap [7] both try to find a map
f : X → Rd that preserves all pairwise distances to the best extent possible. Suppose dX(·, ·) is a
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metric on X. The mapping Y = f(X) is chosen to minimize∑
i,j

∣∣dX(xi, xj)
2 − |yi − yj |2)

∣∣2.
Classical MDS takes global Euclidean distances dX(xi, xj) = |xi − xj | for all i, j. However, this

does not faithfully represent data coming from a nonlinear space M , such as the “Swiss roll” dataset,
since points close together in the ambient Euclidean space could be far apart in geodesic distance
dG on the manifold.

The main innovation of Isomap is to replace the global distances on X with approximate geodesic
distances. First, dX is used to discover a “neighbor” relation on X, for instance, based on a threshold
criterion xi ∼ xj if dX(xi, xj) < ε for some ε > 0, or by a k-nearest-neighbors criterion. Whatever
the method chosen, this relation defines a weighted graph G = (X,W ) with wij = dX(xi, xj) if
xi ∼ xj . Finally, the shortest-path distance dG on the graph is used in place of dX as the input to
the above minimization procedure.

2.1.2. Laplacian eigenmaps. The method of Laplacian eigenmaps emphasizes preserving locality –
nearby points in the data space should get mapped to nearby points in the lower dimensional space.

Given a data set X ⊂ RN , construct a similarity graph G = (X,W ), where xi and xj are joined
by an edge according to one of the following rules

• n-nearest-neighbors: wij = 1 if xi is among the n nearest neighbors of xj or xj is among
the n nearest neighbors of xi. Distances are measured in the ambient space RN .

• |xi − xj | < ε for some threshold ε.

Also choose weights wij according to one of the following schemes:

• wij = 1 iff xi and xj are joined by an edge.

• Heat kernel: for some parameter t, set wij := exp(− |xi−xj |
t ) if xi and xj are connected.

Let L = D −W be the unnormalized Laplacian matrix of G. Then for any map f = (f1, . . . , fd) :
X → Rd, writing yik = f i(xk), the quantity

1

2

∑
ij

wij |yi − yj |2 =

X∑
i=1

|〈Lyi, yi〉| = tr(Y TLY )

measures how well the neighborhood property is preserved. Of course the constant map minimizes
this quantity, but that would yield no information about X. Instead, we want to insist also that
the vectors yi be linearly independent and orthogonal to the constant vector 1. More precisely, one
determines the desired mapping Y = f(X) by solving the constrained minimization problem

min
Y TDY=I

tr(Y TLY ).

The solution is given precisely by the eigenvectors yi corresponding to the smallest eigenvalues λk
of the normalized Laplacian D−1L; equivalently, D

1
2 yk are the orthonormal eigenvectors for the

symmetrized Laplacian D−1/2LD−1/2.
When X comes from a compact manifold (M, g) and the similarity graph G is defined with the

heat kernel weights, the graph Laplacian L can be regarded as a discrete analog of the Laplace-
Beltrami operator −∆g of the underlying manifold and the eigenvectors yi as approximations to the
lowest-energy eigenfunctions of −∆g, which solve a continuous analog of the preceding embedding
problem. See Belkin and Niyogi (2003) for further details [2].
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2.2. Submanifold Estimation. This part of our notes is a re-explanation of some parts of section
3 of [10].

Let X = {x1, . . . , xn} be a random sample from a probability distribution P supported on some
subset X ⊂ Rd.

Sometimes the distribution P is supported on a submanifold S ⊂ Rd with r = dim(S) < d.
A natural estimate for S is to take the union of ε-balls of each point:

Ŝ :=

n⋃
i=1

B(xi, ε).

It has been shown that under suitable assumptions on S and P , the estimator Ŝ can be made to
converge in Hausdorff distance H(·, ·) to S; more precisely one has the bound

P (H(Ŝ, S) > ε) ≤ Cr−de−cnε
d

.

It is unlikely that a sample will fall precisely on a submanifold S. A more realistic model is to
allow a noise term from a distribution such as a Gaussian.

Most manifold learning methods assume that the distribution P is supported on some manifolds
S. This is a very strong and unrealistic assumption. A weaker assumption is that there may exist
some low dimensional sets where the density p has a relatively high local concentration. One way to
make this more precise is through the idea of density ridges. Let ph(x) be a (estimated) probability
density function. Without loss of generality, we may assume it to be a Morse function. Each critical
point y of ph(x) a unique signature, which is given by the number of positive/negative eigenvalues
of the Hessian at y. The tangent space at y is a direct sum of the subspace E+ generated by the
positive eigenvectors of the Hessian and the subspace E− generated by the negative eigenvectors of
the Hessian. Then a density ridge a lower-dimensional submanifold given by the exponential of the
tangent space E+ at a critical point y. Note that the modes/local maxima used in mode clustering
are special cases of density ridges.

In addition, there is also a theory for estimating “stratified spaces”. This applies to the case when
P is supported on a union of intersecting manifolds. This is much less well developed than standard
manifold estimation. Local PCA work is referenced here.

2.3. Persistent Homology. There are various constructions and algorithms for Persistent Homol-
ogy. While simplicial, celluar and Cech complexes work well for computational purposes, concep-
tually we find it most natural to start from Morse theory and Morse homology. We first present
the introduction to Morse theory and Morse homology from Wikipedia, then define Morse homol-
ogy, followed by a quick explanation of some of its applications. These are based on ”Persistent
Homology-a Survey” by Herbert Edelsbrunner and John Harer [3], as well as ”Topological Persis-
tence and Simplification” by Herbert Edelsbrunner, David Letscher, and Afra Zomorodian [4].

2.3.1. Morse Homology and Construction of Persistence Homology. Given any (compact) smooth
manifold M , let f be a Morse function and g a Riemannian metric on the manifold. The pair
(f, g) gives us a gradient vector field. We say that (f, g) is Morse-Smale if the stable and unstable
manifolds (attracting and repelling sets) associated to all of the critical points of f intersect each
other transversely.

For any such (f, g), it can be shown that the difference in index between any two critical points
is equal to the dimension of the moduli space of gradient flows between those points. Thus there is
a one-dimensional moduli space of flows between a critical point of index i and one of index i − 1.
Each flow can be reparametrized by a one-dimensional translation in the domain. After modding
out by these reparametrizations, the quotient space is zero-dimensional — that is, a collection of
oriented points representing unparametrized flow lines.
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A chain complex C∗(M, (f, g)) may then be defined as follows. The set of chains is the Z(or Z2

for data analysis)-module generated by the critical points. The differential d of the complex sends a
critical point p of index i to a sum of index-(i− 1) critical points, with coefficients corresponding to
the (signed) number of unparametrized flow lines from p to those index-(i− 1) critical points. The
fact that the number of such flow lines is finite follows from the compactness of the moduli space.

The fact that this defines a complex (that is, that d2 = 0) follows from an understanding of how
the moduli spaces of gradient flows compactify. Namely, in d2p the coefficient of an index-(i − 2)
critical point q is the (signed) number of broken flows consisting of an index−1 flow from p to some
critical point r of index i − 1 and another index−1 flow from r to q. These broken flows exactly
constitute the boundary of the moduli space of index−2 flows: The limit of any sequence of unbroken
index−2 flows can be shown to be of this form, and all such broken flows arise as limits of unbroken
index−2 flows. Unparametrized index−2 flows come in one-dimensional families, which compactify
to compact one-manifolds. The fact that the boundary of a compact one-manifold is always zero
proves that d2p = 0.

We denote the kernel of ∂k to by Zk, and the image of ∂k by Bk.
The k−th homology group of a chain complex (C∗, d) is the quotient Hk(Zk/Bk). In the setting

of Morse Homology this is basically the quotient of the group of critical points of index k by the
group of critical points of index k which are the images of the gradient flow from some critical points
of index k + 1.

Intuitively, persistence homology is a test of how long homology classes live. In the context of
Morse Homology, let t1 < t2... < tm be the critical values of f and consider an interleaved sequence
with si−1 < ti < si for 1 ≤ i ≤ m. To capture the homology that exists at the beginning and the
end we set s−1 = t0 = −∞ and tm+1 = sm+1 = ∞. For each −1 ≤ i ≤ j ≤ m + 1 we have the
inclusion Msi ⊆Msj and the induced homomorphism between the corresponding homology groups
f i,jp : Hp(M

si) → Hp(M
sj ). On the level of critical points, this map coincides with gradient flow.

We call the image of f i,jp a persistent homology group because it consists of classes born before si
that are still alive at sj . More explicitly, this is the quotient group Zp(M

si)/Bp(M
sj ) ∩ Zp(Msi).

Here kernels of differentials persist as move into bigger sublevel sets that include more critical points,
but images of differentials could change as cycles that were not boundaries could become boundaries
as we get more higher dimensional cells. Intuitively, we are trying to keep track of the stage at which
a given homology cycle becomes a boundary in this filtration indexed by critical points.

We could generalize the notion of persistence homology to a more generalized class of functions
called tame functions. We call a function f from a topological space X to R tame if the homology
groups of every Xa = f−1((−∞, a]) have finite ranks and there are only finitely many values t across
which the homology groups are not isomorphic.

2.3.2. Relevance for Data Analysis. Now we have a finite collection S of data in a metric space,
and data clustering is an important problem. One thing we could do is to consider the topological
space which is a finite union of open balls Xε =

⋃
p∈S,ε∈RBε. The topology of Xε changes as ε

varies. Therefore we could apply generalized Morse theory to the distance function on the space
X =

⋃
ε∈RXε.

For computational purposes, we could define compatible Delaunay triangulations of all Xε and
get a filtration of simplicial complexes (just as in the case of Morse homology). Then we set up a
big matrix which keeps track of the boundaries of faces at each stage of this filtration of simplicial
complexes. Then computing homology or persistent homology would be about computing ranks and
kernels of matrices.

Persistence homology has a good stability properties, meaning that the bottle neck distances
between the persistence diagrams of two functions are bounded above by the differences between the
two functions. This stability property enables us to apply persistence homology to some interesting
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problems. For instance, because of stability, we can study persistence homology for time series data.
When we have one continuous family of functions ft : M → R, the data in persistence diagram also
move in continuous curves.

More generally, we can replace the distance function by any probability density function p(x),
and study its persistence homology.

Now recall the mode clustering method for density clustering. In the language of persistent homol-
ogy, each mode has a lifetime. Persistent homology precisely captures the creation and annihilation
of clusters in the density tree construction.

2.4. Cech Cohomology and Mapper. First, consider a topological space M with an open cover
U = ∪i∈IUi, where I is a finite indexing set. The nerve N(U) is defined to be the simplicial complex
whose vertex set is the indexing set I, and where a family {i0, ..., ik} spans a k−simplex in N(U) if
and only if Ui0 ∩ ... ∩ Uik 6= ∅. The nerve gives a combinatorial and computational model of M . In
particular, when the open cover U is a good cover, the space M and the nerve N(U) have the same
cohomology. This is the idea behind the definition of Cech complex and Cech cohomology in terms
of intersections of open sets in an open cover. For any continuous map f : X → Z, the preimage of
an open cover of Z is an open cover of X.

The algorithm Mapper [?] adopts the topological ideas above to discrete data sets, and aims to
reduce complex data sets to combinatorial objects while keeping some of the essential topological
features. More specifically, let X be a point cloud data set with n data points. Let f : X → Z be a
function from X to a parameter space Z. Some common examples of Z include R, S1,R3 and other
higher dimensional spaces. This function is called a filter. We assume that it is possible to compute
inter-point distances between the points in X.

To implement Mapper, the first step is to choose an open cover V of the parameter space Z.
When Z = R, the range of the filter f is usually divided into a set of smaller intervals which overlap.
This in turn gives a natural partition of X into intersecting subsets of data points. To quantify
the topological notion of connected components in subsets of data points, clustering algorithms that
take the inter-point distance matrix as an input are used.

One clustering algorithm implemented by the authors works as follows. First, we run the single-
linkage clustering algorithm on the n data points. At the beginning, each individual data point is
considered as a cluster. At each stage of the algorithm, two clusters that are closest are merged. At
the end, it returns a vector C ∈ Rn−1 whose coordinates are the distances between the two clusters
that merge at each stage of the algorithm. Then the number of clusters in each partition of X is
determined based on the idea that intra-cluster distances should be much smaller than inter-cluster
distances. If we plot the coordinates of C in a histogram, we expect to see jumps. More explicitly,
if we divide the histogram into k intervals for some positive integer k, we expect to see a set of
interval(s) corresponding to the small coordinates of C, a set of empty interval(s), followed by a set
of interval(s) corresponding to the large coordinates of C. By allowing all edges of length shorter
than the length at which we observe the empty interval in the histogram, we recover a clustering of
the data. Increasing k will increase the number of clusters we observe, and decreasing k will reduce
it. While this method worked well for many data sets, it still has various limitations. This part of
the procedure is open to exploration and change in the future.

One interesting feature of Mapper is that by varying the coarseness of the open cover of Z, the
coarseness of the corresponding open cover of X changes and we get natural maps between the
resulting simplicial complexes. This is called multi-resolution structure, and help us removing noises
by singling out topological features that do not persist as the covers change.

In the topological story, when the open cover U of the space M is not a good cover, its nerve may
not recover the Betti numbers of M . Therefore, sometimes Mapper is implemented for parameter
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spaces with higher dimensions and richer topology, so as to preserve more features in the original
data sets.

2.4.1. Examples. Mapper has been proven useful in many examples. Below we outline two of them,
one is geometric, and the other is an application to biology/medicine.

In section 5.2 of [?], the authors explains the application of Mapper to a sample of 1500 points
from a two dimensional torus embedded in R3. This data set was embedded into R30 with a random
rotation. They then built a graph whose vertices are the data points. Each pair of distinct vertices
is connected by an edge and labelled by a weight which only depends on the distances between
the data points. The graph Laplacian is the 1500 × 1500 matrix whose entries are given by the
(normalized) weight. For the filters, they used the first two non-trivial eigenfunctions of the graph
Laplacian, which we touched upon in section 1. Each entry of an eigenfunction is the image of a
data point. These eigenfunctions carry interesting geometric information of the data set. At the
end, with appropriate choices, the authors obtained a four-dimensional simplicial complex whose
Betti numbers agree with that of the torus.

In the PNAS paper [4], a new group of breast cancer was discovered using Mapper. The initial
data set came in the form of a real matrix M , where the columns are the genomic data of individual
patients, and the rows are different genomic variable types. Then the authors produced a new matrix
Md from M whose columns represent differences between breast cancer data and normal data for
individual patients. The columns of Md is the data set X used for Mapper analysis.

The filter functions are the k ∈ Z+ powers of Lp norms of the vectors in X. These filters measure
deviations from the normal tissues by real numbers. For clustering individual components, a notion
of distance between individual data vectors is needed. For that the authors treated the genes of
individual patients as random variables and the coordinates for each gene vector in X as data
samples. Then given two vectors(finite collections of real numbers representing different aspects of
genes) in X, the authors defined their distance to be their statistical correlation. At the end, the
new group of breast cancer, c-MYB+, is shown as a distinct segment below.
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