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A structure of dynamical theories is proposed that implements Mach’s
ideas by being relational in its treatment of both motion and time. The
resulting general dynamics, which is called intrinsic dynamics and by
construction treats the evolution of the entire Universe, is shown to
admit as special cases Newtonian dynamics and Lorentz-invariant field
theory provided the angular momentum of the Universe is zeroin the frame
in which its momentum is zero. The formal structure of Einstein’s general
theory of relativity also fits the pattern of intrinsic dynamics and is
Machian according to the criteria of this paper provided the so-called
thin-sandwich conjecture is generically correct.

1. A FRAMEWORK FOR IMPLEMENTING MACH’S IDEAS

Dynamics is generally presented as the theory of the motion of arbitrary dynamical
systems in space and time. However, as we pointed outin our earlier papers (Barbour
1974, 1982; Barbour & Bertotti 1977), a fully relational (and hence Machian) theory
should start by considering the relative motion of the Universe treated as a single
entity and then recover the motion of subsystems within the background provided
by the Universe at large. This leads to explicit determination of the inertial frames
of reference in terms of which dynamics is usually formulated.

Let us consider how a Machian scheme will differ from the framework of classical
dynamical theory (see, for example, Lanczos 1949; Synge 1960), in which the basic
concept is the configuration space @ of the system under consideration. Its points are
defined by a set of variables ¢ = (¢;,¢s, -..). It is sometimes convenient to regard the
time ¢ as an extra dynamical variable ¢, = ¢, and adjoin it to ¢, obtaining thereby
the space of events QT'. A history of the system is represented by a curve in @7, the
points of which are labelled by an arbitrary and monotonic parameter A, the label
time. This history is governed by an action § = f dA#(q, q,) and the corresponding
variational principle. The Lagrange function £ is homogeneous of degree one in
g, = dg/dA, so that the action S is invariant under an arbitrary transformation of
the parameter A. Therefore .# defines a Finsler metric ds = dA Z in QT and, if it is
not degenerate, determines a unique history given its initial configuration g and its
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296 J. B. Barbour and B. Bertotti

initial direction dg. We propose to construct Machian theories in accordance with
the same basic scheme but with two modifications.

First, the configuration ¢ is generally defined in a frame of reference. Typically,
a set of NV point particles is determined by their 3N Cartesian coordinates r; (1 = 1,
2,...,N); here g = (r,). However, a classical (i.e. non-relativistic) system of N
particles is really defined only by their relative distances r;;. Because of the under-
lying Euclidean geometry, only 3N — 6 of these distances are independent. There is
a six-parameter set of ¢ = (r;) that corresponds to a given set of r;;; the sets are
related to each other by a transformation of the Euclidean symmetry group E,:

Ey:r—>r =Ar+h, (1.1)

where A is an orthogonal three-dimensional matrix and h is a vector. The con-
figuration space @ is decomposed by E,, into orbits, denoted by {q}, defined as the set
of gs obtained by the application of all the elements of E,. It is natural to regard the
7;;88 primary, to consider the different representations g of a given {g} asrepresenting
the same state of the system, to call the set of all orbits {¢} the intrinsic (or relative)
configuration space (i.c.s.) of the system and to denote it by @,. In more complicated
cases, for example in field theory, the introduction of explicit relative configuration
variables like r,; isnot possible; thei.c.s. can be constructed only through the under-
lying group-theoretical structure, as will be explained later.

The Newtonian or Lorentzian forms of dynamics for general physical systems are
formulated in @. In contrast, we shall show here how, if the Universe satisfies certain
conditions at infinity (in particular, if it is finite), its dynamics can be formulated in
@, and Newtonian or Lorentzian dynamics recovered in their conventional forms
for isolated subsystems. The conflict between absolute and relative motion is then
resolved. We shall say that a dynamical theory formulated in @, implements the
Jirst Mach principle. '

Our second modification concerns the treatment of time. For a system in Q7', the
time ¢ is always provided by a clock exterior to the system. For such a ¢, the ‘speed’
at which the system moves through @ is well defined and motions along the same
curve in @ correspond to different curves in Q7. But if the points g of @ represent
the entire Universe, it is hard to see what meaning could be attached to saying that
absolutely everything is speeded up by the same amount: all the observable
relations are still run through in the identical sequence. As was pointed out by
Barbour (1974), the easiest way out of the dilemma is to assume that the Universe
as a whole does not evolve in some @,7" obtained by adjoining an independent time
to @y, but simply in @,. In this view, the passage of time merely reflects the Universe’s
moving from one point of @, to another. This is Leibniz’s concept of time as merely
the successive order of things: instants are defined by the successive relative con-
figurations of the Universe (see Leibniz 1716). These define a curve in @, whose
points can be labelled by a monotonic and continuous parameter A, a purely
topological label with no metrical properties associated with it. We shall say that
a theory that dispenses with an independent time and treats motion in @, alone
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implements the second Mach principle (this expression was coined by Mittelstaedt
(1976); Milne (1948) also advocated the construction of dynamical theory without
recourse to time as an independent element).

Aswe pointed outin Barbour & Bertotti (1977), a Machian theory will beinvariant
under the Leibniz group:

E:r—>1r" =AQ) r+h(A), (1.2a)
A=A =f(A), df/dA#0, (1.28)

where the scalar f, the orthogonal matrix A and the vector h are arbitrary functions
of the label A.

In the first part of the paper we shall show how theories of the Universe as a whole
invariant under (1.2), which involves seven arbitrary functions, can lead to theories
of subsystems that are invariant only with respect to the much more restricted
(finite-parameter) Galileo or Lorentz groups. This is achieved by a new-and
Machian —form of dynamics, called intrinsic dynamics. In the final part we shall
show that intrinsic dynamics has essentially the same structure as gauge theory and
Einstein’s general theory of relativity.

2. INTRINSIC DYNAMICS

The previous considerations strongly suggest that a Machian theory will be
realized by a variational principle in the space of orbits ,, in analogy with the
variational principles of classical mechanics in @7'. Such a principle is given by a
Finsler metric in ,. In Barbour & Bertotti (1977), we achieved this aim by writing
down a Lagrange function directly in terms of the relative distances r;; between
point particles of masses m,. While this was satisfactory in showing how a Newtonian-
type dynamics invariant under only the Galileo group could arise locally as a good
approximation from a Machian dynamics invariant globally under the Leibniz
group (1.3), an unsatisfactory feature was the prediction of anisotropic effective
masses, in contradiction with experiment. There also appeared to be no simple
extension of such an approach to encompass field theory. Both the problems can
be resolved in what we shall call intrinsic dynamics.

To define a distance in ¢, a new mathematical tool has to be introduced, called
the intrinsic differential. We shall see later that it is closely related to gauge theory.
To grasp the idea, consider the example of a real scalar field ¢ defined on two-
dimensional Euclidean space: ¢ = ¢(x,y). Suppose two successive ‘phLotographs’,
called ¢, and ¢,, are taken of such a field as it evolves. Each shows a pattern of
intensities, the field strength ¢ at each point. The relative disposition of the inten-
sities in ¢, defines the position of ¢, in @,. The descriptions in @ are obtained by
laying a Cartesian grid in some arbitrary manner on the (z, y)-plane and determining
the set of values ¢,(x, ), which fixes a ¢, in Q. The orbit {¢,} is obtained by placing
the Cartesian grid in all possible ways, and similarly for {g,}. If ¢, and ¢, differ
intrinsically, {¢,} and {g,} are distinct.
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If we now ask after the variation in ¢ between the two photographs, we come up
against the problem that led Newton to introduce his concept of absolute space.
Namely, we need to have some rule that enables us to fix the grid on ¢, relative to
the grid on ¢, (which can always be chosen arbitrarily). Intrinsic dynamics is based
on a simple principle which dispenses with a need for absolute space: namely,
calculate first the difference d¢ = ¢, — @, with arbitrary Cartesian grids and then
evaluate the L, distance

ds? = f da f dy (dg)? (2.1)

(of course, we assume the required convergence properties); then by the action of
E, shift one grid with respect to the other until ds is minimized. This procedure
stacks ¢, relative to ¢, and its significance is clear: it reduces the difference between
¢, and ¢, to the smallest amount possible (as measured by (2.1)); the corresponding
minimal ds can be called the distance between ¢, and ¢,. Itis coordinate-independent
and determined globally.

In general, assume that a positive definite metric

ds® = (dg|dg), ¢—q, =dg
is defined in . Under the action of the Lie algebra of E,,

qg—>q =q+3¢,0,9, (2.2)
a

where 0, are the operators of infinitesimal translations and rotations. Since dg is
infinitesimal, it is sufficient to act upon g, or ¢, with the algebra (2.2); we must then

minimize the form {dg+3€,0,9]dg+ X €,0,9)
with respect to €,. This defines 60: and a metrig in @y:
ds§ = {dg + X €9, 0o 9]dg + X €02 0u9) = <drg|dr9)-
The expression dyg =dg+ % €02 0.9 (2.3)

is the intrinsic differential and, of course, is nothing but the part of dg that is
orthogonal to the orbit of the group at ¢:

0 = {d;q|0s9) = <dq+2a60a0aq|0,sq>- (2.4)

If we now consider a geodesic principle in @ determined by a @-metric (dg|dg),

35 =0, 8 = [Qglgdh (2.5)
we can construct the related action
§ = [ @+ Ea,N 0,810+ Ba ) 0,0 (2.6)

The minimization of § with respect to a, leads to the functions a,,(A) (for any given
history ¢(A)) corresponding to the intrinsic differential

dlq = (q/\ +X aOa(A) an) dA,
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and to an action and corresponding variational principle

38 =0, 8= f(d1q|diq>%. (2.7)

The action (2.6) contains the true dynamical variables ¢ and the a,, which can be
regarded as auxiliary variables or, better, since the A-derivatives of the a,(A) do not
occur in (2.6), as constraint variables. The constraints corresponding to the a, do
not reflect the application of real forces to the system, but rather are introduced to
obtain a variational principle that holds in an arbitrary frame of reference; they are
therefore what Dirac (1964) calls primary first-class constraints. Whenever one has
such a variational principle, neither the true dynamical variables (the gs) nor the
constraint variables (the a,) are uniquely determined by the equations of motion
that follow from the variational principle. The arbitrariness in the solution (for
given initial conditions) corresponds to the possibility of representing the same
physical solution in all possible frames of reference. Thus, the physical solution is
unique but the description of it is not.

Suppose an arbitrary path is defined in @,. It can be represented in @ by many
different paths; however, for any given initial ¢ in @ there is a unique representative
path in @ distinguished by the fact that it cuts all the orbits in @ orthogonally. This
is the path found by the stacking procedure outlined at the start of this section; we
shall call it the stacked path. Note that along the stacked path the a, in (2.6) vanish.

The group E, generates in the configuration space @ a group of motions that leave
the metric (dg|dg) invariant. The trajectories determined by the action S, in (2.5)
are the geodesics of this metric.

TaEOREM. The physically distinct solutions to the Q,-problem (2.7) are the geodesics
of the problem (2.5) that cut the orbits orthogonally.

This theorem is well known from the theory of motions in Riemannian spaces (see,
for example, Eisenhart 1933), but it is worth giving a separate proof.

Proof. The action for (2.7) along any virtual path in ¢, is independent of the path
by which it is represented in . Therefore, calculate it on the stacked representative
pathin Q. But on this path § = S, since then the a, = 0. If a stacked path satisfies
the principle (2.5), it is extremal in the set of all virtual paths in @, including the
stacked virtual paths. But it then satisfies the principle (2.7) as well, because for
(2.7) it is sufficient to compare a realized path with stacked virtual paths, on which
the two actions are equal. Hence any stacked geodesic of the principle (2.5) is a
solution of (2.7). Moreover, this exhausts all the physically distinct solutions to
(2.7). For suppose any initial condition for (2.7) is specified by some ¢ and dg. By an
allowed transformation, we can also make dg perpendicular to the orbit {g} of ¢
(stacking of the initial condition). Since we assume (dg|dg) non-degenerate, there is
a unique solution to the problem (2.5) with this initial condition. Now (2.5) is still
invariant under thesix-parameter Euclidean group E,, so that by Noether’stheorem,
part I, any solution to the problem (2.5) conserves the quantities

Pa = <Q/\Iq/\>_% <Q/\|0aq> (28)
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But the vanishing of the P, is precisely the condition (2.4) which ensures that a
particular path in @ is stacked. Thus, an initial condition for (2.5) that is stacked
generates a solution that is stacked at all times. In geometrical language, if a
geodesic cuts an orbit of @ orthogonally at the initial instant, it will cut all sub-
sequent orbits orthogonally as well.

The P, in (2.8) are the total momentum and angular momentum of the Universe
associated with the action (2.5). Thus, the end effect of our intrinsic principle is to
select the solutions of (2.5) that have vanishing momentum and angular momentum.
This result is due to the implementation of the first Mach principle by the action
(2.7). We mention in this connection the striking fact that the Universe does not
appear to have any appreciable angular momentum, in agreement with the pre-
diction of intrinsic dynamics.

3. RECOVERY OF NEWTONIAN MECHANICS IN A MACHIAN SCHEME

We shall now show how a particularly simple form of intrinsic dynamics leads to
the Newtonian mechanics of a Universe of N gravitating point particles in Euclidean
space. Let the particles have masses m;, 7 = 1, ..., N, and let ¢ = (r;). Then a metric

in @ is given by (dg|dg) = Sm,dr,-dr,. (3.1)
This metric, which is flat, is too simple to yield non-trivial dynamics, which can be

obtained by multiplying (3.1) by the ‘conformal factor’ V(q) = Z;_;m;m;/r;;. Let
us therefore consider the @, variational principle

8IQo = O’ IQO = fd/\ [<Q/\ + § aa(A) OaQIQ/\ + 2 aa(A) 0aQ> V(Q)]é- (32)

By our theorem, we know that the physically distinct solutions to this @, variational
principle are the solutions to the related @-problem.

§1=0, I= f dAKaalg V@,

for which the momentum and angular momentum vanish simultaneously. Defining
_ dr, dr,

T= %mza‘ e \CALIVE
we obtain the Euler-Lagrange equations
4 (E 911;) - 1T840V
dA\T¢dA) — 2Vior,
There is a unique choice of the arbitrary label A that casts (3.3) in an especially
simple form, namely when A is chosen such that

T% = V4. (3.4)

Then, if we denote the derivative with respect to the distinguished time label by a
dot, (3.3) becomes m#, = 10V Jor,,

(3.3)
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which is identical to Newton’s second law for gravitating point particles with
gravitational constant }. Since we are not considering any other forces, this par-
ticular numerical value has no significance. The physically significant result is
the condition (3.4), which tells us that the total energy of the system is exactly zero.

The results of this and the previous section show that there is no conflict between
a fully relational formulation of the dynamical law of the Universe and the existence
of special frames of reference and a special time variable that cast the laws of motion
of subsystems of the Universe into particularly simple forms. The inertial frames of
Newtonian theory arise from the fully Machian theory (3.2) when we perform the
purely kinematic operation of stacking. The particles then obey Newton’s laws as
expressed in inertial frames, though the inertial frames have no absolute significance
and are determined through the stacking procedure by the distribution and relative
motion of the matter in the Universe. Similarly, absolute time does not exist in the
scheme but rather is constructed from the Machian dynamics and the arbitrary
Leibnizian time label A by choosing it to enforce a specific (and rather obvious)
simplicity requirement.

It is to be noted that the prediction of vanishing total energy of the Universe is
a consequence of the particular and simple form of the Lagrange function and not of
intrinsic dynamics (or Leibniz invariance) per se, as was pointed out to us by
Kucha¥. Consider the classical system with additive Lagrange function

La=T+V =4+ 7V(9), (3.5)

where (dg|dg)is ametricin Q@ and — V(q)is the potentialenergy. If W = T — V is the
(conserved) total energy, the corresponding variational principle can be formulated
in a way in which the time variable does not appear by using Jacobi’s variational
principle for the path of the system in @:

0= 5 [a\ (¥ + V() dgldg)p (3.6)

(see, for example, Lanczos 1949). By replacing dg with the intrinsic differential
d;q as in (2.3), one can then formulate the dynamics in a Machian form. Note that
W is to be regarded as a fixed constant. If, as in the example above, the potential
energy is negative, W can take the value zero, and we recover our principle (3.1).
The possible appearance of the arbitrary constant W is a weakness of the theory
and suggests we need a principle stronger than the invariance under (1.2b) (see
later).

It has also been pointed out to us by Kuchat that, if the concept of the intrinsic
derivative is abandoned, it may be possible to formulate classical dynamics in ¢,
without the requirement that the other constants of the motion vanish. This is the
case when one can express the Lagrange function in a form independent of the
coordinates on each orbit. They are then ignorable, and the classical procedure for
their elimination can be followed (see, for example, Whittaker 1937). A well known
example is provided by the two-body central-force problem, which can be described

This content downloaded from 131.104.62.10 on Mon, 1 Jul 2013 18:59:00 PM
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

302 J. B. Barbour and B. Bertotti

(in @,T') by an action principle with the Lagrange function & = }mR?— M?/2mR?
— V(R), where m is the reduced mass, M isthe angular momentum, V(R)is the poten-
tial energy, and R is the relative distance between the two bodies. This gives us a re-
lational dynamics, but at the price of the introduction of the arbitrary constant M.

A very interesting discussion of the status of such constants when the complete
Universe (assumed finite) is under consideration was given by Poincaré (19oj3,
pp. 76-79 and ch. VIII) (see also Zanstra 1924). Are they to be regarded as
‘accidental’ (reflecting initial conditions for Galileo-invariant mechanics) or
‘fundamental’ (being integral parts of a relational dynamics of the Universe as a
whole)? If the latter interpretation can be adopted, then, as Poincaré points out,
there is no problem of absolute motion at all. Poincaré adduces some arguments
against the latter interpretation, based mainly on the curious and arbitrary structure
of the dynamical theories containing such constants.

In particular, he finds it curious that the evolution of the Universe is nearly but
not quite determined by specification of the observable initial conditions, namely
the initial relative positions and the initial relative velocities, but requires in
addition specification of the above arbitrary constants. As ideal, Poincaré puts
forward the following statement, which we shall call Poincaré’s principle (for the
strengthening of this principle to take into account the unobservability of absolute
time, see Barbour (1982)):

‘For the mind to be fully satisfied, the law of relativity would have to be enun-
ciated as follows: The state of bodies and their mutual distances at any given
moment, as well as the velocities with which these distances are changing at the
moment, will depend only on the state of those bodies, on their mutual distances
at the initial time, and on the velocities with which these distances were changing
at the initial time.’

There are two points we should like to make in this connection. (i) The difficulty
with the arbitrary structure disappears if the constants have vanishing values. In
such a case, one obtains Leibniz-invariant laws of motion that have a simple and
natural structure from the point of view of @,, and all conflict between absolute and
relative motion disappears. In particular, the angular momentum must be zero in a
theory based on the intrinsic differential. (ii) We shall see in the next section that
general relativity can be cast in the form of a @ -theory with a structure that is a
very natural generalization of (3.2).

Before turning to general relativity, we note that the same scheme of (3.5) and
(3.6) can be used in field theory and leads to Lorentz invariance. For example, for
a real scalar field ¢(r) we can, from the classical kinetic energy 7' = f d®r ¢%, and
potential energy — V = f d3r (V¢)?, construct the Leibniz-invariant action principle

88 = 0, S=fd/\{[W—-fd%(V¢)2]fd3r(¢,\+?aa0a¢)2}%.

This leads then to the solutions of the wave equation with vanishing total angular
momentum in the frame in which the momentum P vanishes. The energy W must
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be greater than zero because the wave equation, being equivalent to a set of
harmonic oscillators, has positive definite energy. Note, however, that the condition
P = 0, W # 0 for the whole Universe is not Lorentz invariant.

The examples considered so far satisfy the restricted principle of relativity
(Galilean invariance in Newtonian mechanics, Lorentz invariance in field theory).
It is easy to show by counter examples that this is not a consequence of our Machian
requirements but of the particular structure of the metric defined on @.

4. INTRINSIC DYNAMICS, THE GAUGE PRINCIPLE,
AND GEOMETRODYNAMICS

In this final section, we want to show that gauge theories and Einstein’s general
theory of relativity are examples of intrinsic dynamics. We begin with the electro-
magnetic field.

Suppose that @ is defined by the configurations of a three-dimensional vector A
on Euclidean space; to the Euclidean symmetry group E, we adjoin the three-

dimensional gauge group HA>A = A+ (4.1)
3 = , .

where A(r) is an arbitrary scalar function. We now introduce the intrinsic con-
figuration space @,, whose points are the orbits of @ with respect to the infinite-
dimensional group made up of E, and 5#,. The appropriate (flat) metric is

(AA|dAY, = f dsr|dAJ2. (4.2)

In complete analogy with our basic scheme, a ¢, variational principle is defined by
the action

8= fd)t [fd‘*r (A\+V4+ 5 0,0,4) (W—f&*r |V A|2)F, (4.3)

in which 4 and a, are the auxiliary constraint variables and W is the total energy.
The physically distinet solutions of (4.3) in the privileged time (defined by the
condition analogous to (3.4)) are the solutions with vanishing momentum and
angular momentum of the variational principle with the Lagrange function

L= f A [(A,+ VA)+ (A, +VA)— |V x A2]. (4.4)

But setting A4 = — 4, and identifying 4, with the scalar potential in Maxwell’s
electrodynamics, we see that (4.4) is the Lagrange function for the free electro-
magnetic field. Thus, our intrinsic variation with respect to A is identical to the
variation with respect to the scalar potential in Maxwell’s theory. (Note that the
stacking condition with respect to the gauge group is divA, = 0. By making a
transformation belonging to 5, one can always achieve div A = 0 for all times, in
agreement with the fact that in the stacked form A = 4, = 0.) Of course, it haslong
been known that 4 plays the part of an auxiliary constraint variable and not that
of a genuine dynamical variable (see, for example, Wheeler 1966). What we want to
pointout isthat Newtonian or Lorentzian dynamics can be made to satisfy Poincaré’s
principle in exactly the same way that electrodynamics is gauge invariant.
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The close parallel noted above between the gauge principle and intrinsic dynamics
is repeated in general relativity (for simplicity, we consider the matter-free case,
i.e. pure geometrodynamics): namely one can take as basic dynamical variable the
metric tensor g;; (4,5 = 1,2, 3) of a three-dimensional Riemannian space and con-
sider dynamical theories of the evolution of g;;. The configuration space @ for such
theories is obtained by regarding the ten functions g;; of #* as defining the points
of @. However, since a given g,; can be referred to entirely arbitrary coordinate
systems, all g;; that can be obtained from one another by mere coordinate trans-
formation must be regarded as identical and forming the orbit {g,;} of g;. Each such
orbit constitutes a point of @,. For g,; defined on a compact three-dimensional
manifold, the corresponding @, is known as superspace (see DeWitt 1970). The
infinitesimal transformations generated by an arbitrary infinitesimal coordinate
transformation are B Gi > Giy = iy + Evy+ Epvts (4.5)
where £, is an arbitrary three-vector field and the semicolon denotes the covariant
derivative with respect to g;; itself. The transformations (4.5) are a generalization
of the gauge group (4.1) though an important difference here is that (4.5) represents
the generalizations of both E, and 7. Moreover, the infinitesimal transformations
(4.5) are not linear in g,;.

The action principle for general relativity is usually expressed directly in terms of
the four-dimensional metric g, corresponding to Einstein’s original discovery of the
theory as a theory of space-time. It can, however, be recast as a theory of the
dynamical evolution of Riemannian three-geometries g,;. For this it is necessary to
slice the four-dimensional space-time by arbitrary three-dimensional hypersurfaces
and introduce the lapse N and shift N¢. Both are functions of position on the
considered hypersurface, and the lapse tells one the orthogonal distance on the
considered hypersurface in space-time to the next hypersurface of the slicing, while
the shift tells one the connection between the coordinate systems used on the
successive three-surfaces, i.e. N*is the spatial displacement of the point on the next
hypersurface with the same numerical values of the coordinates.

Then the Hilbert action for matter-free general relativity becomes

Slgsp, N, N¥) = f ax f 3o Ngh{(kyy bV — i, ) [ AN + B), (4.6)

where k;; = dg;;/dA— 2Ny, 5, Ny, p = $(Ny;;+ N;,), Bisthe Riemannian curvature of
the hypersurface, g = det ||g;;||, and the indices are raised and lowered with g,;itself.
Varying with respect to N, we obtain
N = {R-¥(ky; k¥ — k)3, (4.7)
Provided N is real and also N # 0, 00 it is permissible to eliminate N from (4.6)
by substituting (4.7). Introducing at the same time DeWitt’s metric, G¥* =
L9{gPg" + gi*gh — 2¢%ig*}, we cast (4.6) in the form

S[gep, N¥] = f at f B (RIg) GMg] Gy 2Ne.p) Ga— 2N (48)
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This form of the action for geometrodynamics was first given by Baierlein ef al.
(1962). It satisfies our Machian principles, since X is a direct generalization of the
constraint variables introduced in the general theory to implement the first Mach
principle and, moreover, (4.8) is homogeneous of degree one in the time derivatives
(and hence implements the second Mach principle).

Note, however, that (4.8) is much more complicated than the principles con-
sidered earlier, which were all based on a Riemannian metric in @, (square root of a
sum of squares), and, in fact, a conformally flat Riemannian metric. In contrast, in
(4.8) the metric is a sum (integral) of square roots, so that (as Kucha¥ has pointed
out to us) it is a Finsler metric. In this case, there is no scalar product and the
ordinary definition of orthogonality does not apply. However, we can say that a
given dg;;/dA is orthogonal to the orbits of &, if S in (4.8) is stationary with respect
to N,.

It should also be emphasized that general relativity is a very special theory
among all possible theories of the dynamical evolution of Riemannian three-
geometries in accordance with Poincaré’s principle. As was shown by Hojman et al.
(1976), the action (4.8) is almost uniquely determined by the requirement that the
evolving three-geometries can be stacked to make a four-dimensional Riemannian
space, i.e. space—time. (Our scheme based on the more restricted group &, is more
general and could therefore provide a framework to study theoretically violations
of general covariance, in particular Lorentz invariance.)

In the light of our general approach to the problem of motion, the important
thing about (4.8) is that, formally at least, it gives complete expression to Poincaré’s
principle, that is the future evolution of the system is determined in accordance
with the basic law by specification of the initial position in @, (g;;) and the initial
‘direction’ (Jg;;/0A) at that point. The difference between the formal structure of
general relativity and Newtonian mechanics is reflected in the fact that the latter
can be represented in a form analogous to (4.8) only for the solutions with vanishing
energy and angular momentum, whereas no such restriction must be made for
general relativity: it is already in intrinsic form.

However, two reservations must be made. First, for an infinite Universe, the
principle (4.8) must be augmented by boundary conditions at spatial infinity, which
are quite alien to our general scheme. In fact, @, cannot be meaningfully defined
unless the Universe is finite in an appropriate sense and preferably closed. Such an
assumption has been implicit in our entire work and we regard it as a necessary
condition for satisfactory implementation of the idea that inertial motion is
governed by the Universe as a whole. The second reservation relates to the fact that
even for a closed Universe it is not known whether the Cauchy problem corre-
sponding to (4.8) is generically uniquely solvable. This is essentially the thin-
sandwich problem, first formulated by Baierlein et al. (1962), which is not yet
solved though a uniqueness proof under certain conditions has been given by
Belasco & Ohanian (1969).

Revising the opinion we expressed at the end of Barbour & Bertotti (1977), we
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would say therefore that in its basic structure general relativity is Machian and
gives expression to Poincaré’s principle as a theory describing the evolution of
closed three-geometries from intrinsically specified initial data. Though reached
from a rather different and more general point of view, this is essentially the
position of Wheeler (1966) (for matter-free general relativity, i.e. pure geometro-
dynamics; when matter is present, the situation is more complicated and must be
considered separately).

We are both grateful to Karel Kuchat for several very helpful comments and
numerous discussions which considerably clarified our work. We should also like
to thank the referee for drawing our attention to Utiyama’s (1956) paper, which is
similar to ours in showing how a theory with a particular invariance can be trans-
formed into another theory with a larger invariance group. Many mathematical
relations are common to Utiyama’s paper and ours though there are differences in
the basic aims and the methods used to achieve them. Finally, J.B.B. is again
indebted to Professor M. Fraccaro, Rettore of Collegio Cairoli, for hospitality at
Collegio Cairoli during several visits to Pavia between December 1978 and June
1981; B.B. was supported by the Consiglio Nazionale delle Ricerche.
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