
Solution Set #7

Quantum Error Correction
Instructor: Daniel Gottesman

Problem #1. Concatenated Codes

a) First of all, each block of n2 qubits of the concatenated code is itself a codeword of S2, so that gives
us part of the stabilizer.

Encoding a qubit in S2 maps X 7→ X, Y 7→ Y , and Z 7→ Z, where X, Y , and Z are the logical
Pauli operations for S2. Since we start with a state which is a codeword of S1, we must perform
these replacements in the generators for the stabilizer of S1 to get the remaining generators of the
concatenated code.

Thus, the stabilizer of the concatenated code will have n1(n2−1)+(n1−k1) generators altogether. Let
Ai and Bi be the generators of S1 and S2, respectively. For the concatenated code, generator Man2+b

with a = 0, . . . , n1 − 1 and b = 1, . . . , n2 − 1 will then have the form

Man2+b = I⊗an2 ⊗Bb ⊗ I⊗(n1−a−1)n2 . (1)

The remaining generators Mn1(n2−1)+c, c = 1, . . . , n1 − k1 are of the form

Mn1(n2−1)+c =
n1⊗

j=1

Acj , (2)

where Ai =
⊗n1

j=1 Aij , and A is the logical Pauli for S2 (X, Y , or Z) corresponding to the unencoded
Pauli A.

As a concrete example, consider the stabilizer for the concatenated code formed when S1 is the 4-qubit
(distance 2) code and S2 is the 5-qubit (distance 3) code:

X Z Z X I
I X Z Z X
X I X Z Z
Z X I X Z

X Z Z X I
I X Z Z X
X I X Z Z
Z X I X Z

X Z Z X I
I X Z Z X
X I X Z Z
Z X I X Z

X Z Z X I
I X Z Z X
X I X Z Z
Z X I X Z

X X X X X
Z Z Z Z Z

X X X X X
Z Z Z Z Z

X X X X X
Z Z Z Z Z

X X X X X
Z Z Z Z Z

(3)

1



b) Clearly n = n1n2, since each of the n1 physical qubits of S1 is replaced by n2 physical qubits for
S2. Also, k = k1. This is because we originally encoded k1 qubits in S1 and doing the additional
coding into S2 does not add or subtract any encoded qubits. (This is consistent with our counting of
generators in part a: n1n2 − k1 = n1(n2 − 1) + (n1 − k1).)

A more difficult question is the distance d of the code. We wish to find the minimum weight of a Pauli
in N(S) \ S. Let us first consider a Pauli operator P acting only on the qubits of a single block of n2

qubits formed from encoding a single physical qubit of S1 with S2. If P is outside N(S2) (tracing over
the qubits outside the block), then P is also outside N(S), as S2, shifted appropriately, is included in
S. By the same token, if P ∈ S2, then P ∈ S.

Thus we need only consider P ∈ N(S2) \ S2. We can reinterpret P as a logical Pauli Q for S2, which
we know will anticommute with the other logical Paulis for S2. (Recall that k2 = 1.) But if S1 has
distance 2 or higher, it must either include Q (a single-qubit Pauli operator), in which case Q ∈ S, or
have an element M which anticommutes with Q, in which case the element of S corresponding to M
also anticommutes with Q, and Q 6∈ N(S). Therefore, if d1 ≥ 2, no Pauli acting on a single block of
n2 qubits can be in N(S) \ S.

Now let us consider the general Pauli operator, which we write as P =
⊗

Pi, with Pi a Pauli acting
on the ith block of n2 qubits. By the logic above, if P ∈ N(S) \ S, then each Pi ∈ N(S2) \ S2. As
before, we reinterpret Pi = Qi, with Qi a logical Pauli for S2. It makes sense at this stage to imagine
decoding S2 on each block of n2 qubits. This decoding procedure therefore maps P 7→ Q =

⊗
Qi, and

leaves only the stabilizer S1. Decoding preserves commutation and anticommutation relations, so in
order for P ∈ N(S) \ S, we need Q ∈ N(S1) \ S1.

We have thus shown that when P ∈ N(S) \ S, it follows that P =
⊗

Qi, with Qi ∈ N(S2) \ S2 and
Q =

⊗
Qi ∈ N(S1)\S1. It is immediate to look at the stabilizer and see that the converse is true also,

that P of this form is in N(S) \ S. Thus, we see that minimum weight of P ∈ N(S) \ S must be at
least the minimum weight of Q (which is d1) times the minimum weight of each nontrivial Qi (which
is d2), giving d ≥ d1d2. The concatenated code is thus a [[n1n2, k1, d1d2]] code.

It is also possible, however, for the distance to be larger than d1d2, if the smallest-weight elements
of N(S1) only use Paulis Qi which correspond to large-weight Qi. An example of this is the 9-qubit
code, which can be viewed as a concatenated phase error correcting code with a bit flip error correcting
code. Each code, viewed as a quantum code, has distance 1, but they compensate for each others’
shortcomings, so the overall code has distance 3.

c) Now the concatenated code has a blocks of size n2, so n = an2 = n1n2/k2. Again, k = k1, since
encoding again with S2 does not change the number of logical qubits. The distance, however, is worse.
It is again true that P ∈ N(S) \ S iff P =

⊗
Qi, with Q =

⊗
Qi ∈ N(S1) \ S1. However, each

Qi can now act on up to k2 qubits of S1. Therefore, the minimum number of Qis that have to be
nontrivial is no longer d1, but instead could be as low as d1/k2. It is still true that each Qi must act
on at least d2 qubits, though, so we find that d ≥ d1d2/k2. In the general case, therefore, we have a
[[n1n2/k2, k1, d1d2/k2]] code.

However, we might note that while a single Qi can act on k2 qubits, it only acts on the set of k2 qubits
within a block. Therefore, we can gain if we consider S1 as a code over qudits of size D = 2k2 . In
that case, the interesting number for distance is the number of such qudits that must be changed in
order to have an undetectable error, and we again recover the original formula for the distance of a
concatenated code, since each Qi acts on only one such qudit. That is, when S1 is a [[n1, k1, d1]]D code
and S2 is a [[n2, k2, d2]] code (with D = 2k2), then the concatenated code is a [[n1n2, k1, d1d2]] qubit
code. (The point of doing this is that for large D, it is possible to achieve a better ratio of d1/n1.)

2



Problem #2. Threshold for Classical Reversible Computation

a) This part is straightforward: The 0 and 1 preparations each consist of just 3 state preparations (of 0
and 1, respectively), followed by an EC step, so Aprep = 3 + B, where B is the number of locations in
an EC step.

The Toffoli gate gadget contains 3 physical Toffolis to implement the transversal Toffoli gate, plus an
EC step before and after on each of the three bits, for a total of ATof = 3 + 6B.

b) We recall that for the 3-bit repetition code, we need to make parity checks on the first two bits and
the last two bits. We then decode the syndromes as follows:

00 → no error
10 → 1st bit
11 → 2nd bit
01 → 3rd bit

We can measure the syndrome straightforwardly — each syndrome bit can be measured by taking
one ancilla bit starting in the state 0 and doing CNOTs from the two bits whose parity we want to
measure. We do not have to worry about multiple errors appearing in the data block for two reasons:
First, because we are only taking the parity of two bits, an error in the middle of the procedure can
only affect one bit, and second, because this is classical computation, we don’t have to worry about
phase errors propagating backwards along CNOTs anyway.

The difficult part is decoding the syndrome to actually correct the error. A non-fault-tolerant method
of correcting the data based on the syndrome would use three Toffoli-like gates, triggered by the
syndrome being 01, 11, and 01, respectively to flip the first, second, and third bits in the data block.
As in the quantum case, however, a single error on an ancilla can ruin a syndrome bit, which could
have serious consequences if we reuse the syndrome bits.

One straightforward solution is to re-extract the syndrome for each Toffoli-like gate, giving us the
circuit given below:

0

0

s

g

s

g

s

g

s
g ss

g

0

0

s

g

s

g

s

g

s

g ss

g

0

0

s

g

s

g

s

g

s

g ss

g

3



We have changed the exact syndrome measurement procedure for each iteration. Instead of having
just the first pair and last pair of bits for parity checks, we could have taken any two pairs, and we
choose the two pairs that include the bit to be corrected. One reason for this is that we can then use
the regular Toffoli gate to correct the errors, without having to perform any extra NOT gates. The
other reason is explained below.

It is not immediately apparent this circuit actually is fault-tolerant — one might expect to have to
repeat syndrome measurements. EC property 1 is trivial, since any bit string is at most one error away
from a codeword, but EC property 2 needs to be satisfied. The case with one input error and no faults
during the EC step works, but we must check the case with no input errors and one fault during the
error correction procedure. An error during one of the Toffoli gates can only affect a single data bit,
which is allowed, but an error during a CNOT gate could affect an ancilla bit, a data bit, or both.

However, it turns out that we do not need to repeat the syndrome measurements. First, note that if
the faulty CNOT only causes an error on the ancilla, that is automatically acceptable. (An error on
any ancilla can result in at most one error introduced into a data bit.) Thus, we need only consider the
cases where there is an error on just the data or on both the data and ancilla bit involved in the faulty
CNOT. However, for this classical code, there is only one kind of error: a bit flip error. (Since the state
is a classical one, we can assume a definite value of the correct state and define bit flips relative to
that.) Bit flip errors propagate forwards along CNOTs, so a CNOT with a bit flip error on both data
and ancilla is the same as a bit flip error on the data (control bit) followed by a perfect CNOT. That
is, we only need to really consider errors on the data bits before or after the CNOTs in the circuit.

Furthermore, an error on a data bit at the start or end of a syndrome measurement will clearly be
acceptable too, as that means all the syndrome measurements themselves will be correct. Thus, we
need only consider errors during the syndrome measurements, and the only place that is actually in
the middle of a syndrome measurement is between the two CNOT gates acting on the same data bit.
However, we chose the syndrome measurements so that the pair of CNOT gates which share a data
bit act on the same data bit as the one being corrected by the syndrome measurement. Thus, the
possible syndrome error and the data error coincide (which in this case means that the data error is
not corrected, but at least no additional bits go bad). Thus there is no single location in the circuit
that can cause more than one bit to get flipped in the final state, and the gadget satisfies EC property
2.

In each syndrome measurement, we count 2 bit preparations, 4 CNOT gates, and 1 Toffoli gate. The
wait steps are not marked explicitly, but for each stage of CNOTs, one data bit must wait, and during
each Toffoli gate, two data bits wait, so there are 4 wait steps in each syndrome measurement. There
are thus a total of 11 locations in each syndrome measurement, for a total of B = 33 locations in the
EC gadget as a whole.

c) Clearly the Toffoli gate extended rectangle is the largest. It contains a total of A = 3 + 6B = 201
locations. The probability of failure is thus bounded by

p(Bad) ≤
(

A

2

)
p2 = 20100p2. (4)

The threshold is then at least 1/20100 ≈ 5× 10−5. For a variety of reasons, the true threshold of the
concatenated classical repetition code is much larger than this, but this does provide a lower bound.

4


