
Solution Set #1

Quantum Error Correction
Instructor: Daniel Gottesman

Problem #1. QECC Conditions and the 9-Qubit Code

a) There are 28 possibilities for each error Ea or Eb: X, Y , or Z on each of the 9 qubits or I. However,
within each set of three qubits, all three qubits are the same, and all three blocks are the same, so we
only need to separate the cases where both errors are the identity, one error is the identity, both errors
act on the same qubit, both errors act on different qubits in the same block of three, and both errors
act on different blocks of three. Below, Xk, Yk, and Zk refer to X, Y , and Z acting on the kth qubit.

Case I: Ea = Eb = I. In this case, clearly 〈ψi|ψi〉 = 1, so CII = 1.

Case II: Ea = I. We consider the subcases where Eb = Xk, Yk, Zk. It does not matter which qubit Eb

acts on. In all three cases, Eb (|000〉 ± |111〉) is orthogonal to |000〉±|111〉, so CIXk
= CIYk

= CIZk
= 0.

Similarly, CXkI = CYkI = CZkI = 0.

Case III: Ea and Eb act on the same qubit; it does not matter which one. The first subcase is when
Ea = Eb. Then normalization implies Cab = 1, so CXkXk

= CYkYk
= CZkZk

= 1. The second subcase
is when they are different, in which case E†

aEb is equal to ±i times another Pauli matrix X, Y , or Z.
That brings us back to the second case, so the appropriate matrix entries are all zero:

CXkYk
= CXkZk

= CYkXk
= CYkZk

= CZkXk
= CZkYk

= 0. (1)

Case IV: Ea and Eb act on different qubits in the same block of three. This is the most interesting case.
First let us consider Ea = Xk, Eb = Xk′ . Then Ea (|000〉 ± |111〉) is orthogonal to Eb (|000〉 ± |111〉),
and similarly when Ea = Xk, Eb = Yk′ (or vice-versa) and when Ea = Yk, Eb = Yk′ . Thus we have

CXkXk′ = CXkYk′ = CYkXk′ = CYkYk′ = 0 (k and k′ in same block of 3). (2)

When Ea = Xk or Yk and Eb = Zk (or vice-versa), we again get 0, since Ea (|000〉 ± |111〉) is also
orthogonal to |000〉 ∓ |111〉. Thus

CXkZk′ = CYkZk′ = CZkXk′ = CZkYk′ = 0 (k and k′ in same block of 3). (3)

Finally, the subcase in which Ea = Zk, Eb = Zk′ . Then

Ea (|000〉 ± |111〉) = Eb (|000〉 ± |111〉) = |000〉 ∓ |111〉, (4)

so CZkZk′ = 1 when k and k′ are in the same block of 3.

Case V: Ea and Eb act on different blocks of three. Using the logic of case II, we find that on each
block of three, we always get an orthogonal state, so

CXkXk′ = CXkYk′ = CXkZk′ = CYkXk′ = CYkYk′ = CYkZk′ = CZkXk′ = CZkYk′ = CZkZk′ = 0. (5)

Note that the answers we get never depended on which basis states |ψi〉 and |ψj〉 we used, as should
be the case for a QECC.
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b) From part a, the only off-diagonal matrix elements we had were CZkZk′ = 1 when k and k′ are in the
same block of 3. Therefore, we can leave I, Xk and Yk as basis errors, and simply replace the Zks in
each block of three by an appropriate linear combination of Zks. For instance, we may choose

F1 = (Z1 + Z2 + Z3)/3 (6)
F2 = (Z1 − Z2)/2 (7)
F3 = (Z2 − Z3)/2 (8)
F4 = (Z4 + Z5 + Z6)/3 (9)
F5 = (Z4 − Z5)/2 (10)
F6 = (Z5 − Z6)/2 (11)
F7 = (Z7 + Z8 + Z9)/3 (12)
F8 = (Z7 − Z8)/2 (13)
F9 = (Z8 − Z9)/2. (14)

Then
CF1F1 = CF4F4 = CF7F7 = 1, (15)

but
F2|ψi〉 = F3|ψi〉 = F5|ψi〉 = F6|ψi〉 = F8|ψi〉 = F9|ψi〉 = 0, (16)

so any matrix element Cab including one of these six F s is zero as well. The matrix elements between
I, X, or Y and F1, F4, and F7 remain zero, so this change of basis diagonalizes Cab, giving us 6 zero
eigenvalues.

Problem #2. Correcting Small Shifts

a) There are two ways to approach this problem using the techniques we have developed so far. One
is to apply the quantum error correction conditions, and the other is to give an explicit syndrome
measurement and decoding procedure. It is probably easier in this case to apply the QECC conditions
(which in any case will point us towards a decoding procedure), so let us do that:

First, note that any state of the form XaZb|ψi〉 is a superposition (with whatever phase) of kets which
are equal to a mod 3, and that furthermore, XaZb|0〉 are a mod 6 while XaZb|1〉 are (a + 3) mod 6.
Thus, we find

〈ψi|Z−bX−aXa′
Zb′

|ψj〉 = Mibb′δaa′δij (17)

(using the fact that X† = X−1 and Z† = Z−1), so we need only verify that

〈0|Zb′−b|0〉 = 〈1|Zb′−b|1〉. (18)

This is easily done:

〈0|Zb′−b|0〉 =
1
3

(〈0|+ 〈6|+ 〈12|)
(
|0〉+ ω6(b′−b)|6〉+ ω12(b′−b)|12〉

)
(19)

=
1
3
(1 + ω6(b′−b) + ω12(b′−b)) (20)

= δbb′ (21)

〈1|Zb′−b|1〉 =
1
3

(〈3|+ 〈9|+ 〈15|)
(
ω3(b′−b)|3〉+ ω9(b′−b)|9〉+ ω15(b′−b)|15〉

)
(22)

=
1
3
(ω3(b′−b) + ω9(b′−b) + ω15(b′−b)) (23)

= δbb′ . (24)
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Both equations use the fact that ω6 = exp(2πi/3), so 1 + ω6 + ω12 = 0, and require that |b′ − b| ≤ 2,
which follows from b, b′ ∈ {−1, 0,+1}.
The original version of this problem asked if the code was degenerate or non-degenerate, but the
question was removed since we hadn’t yet had a chance to discuss the terms in class. However, we can
see that since the errors all give orthogonal states, this is a non-degenerate code for these errors.

b) If the state experiences an error X2, we will get a superposition of kets which are 2 mod 3. We will
mistake these as having been generated by X−1, which also gives 2 mod 3 kets, so we will correct by
multiplying by an additional factor of X. This gives the overall error X3, which takes |0〉 to |1〉 and
|1〉 to |0〉. That is, the encoded qubit has experienced a bit flip error.

c) There are a number of possibilities, which can be generated by products of the operators X6 and Z6.
We can directly check both of these operators leave the codewords unchanged, as do such combinations
as X6Z6 or X12.

Problem #3. Quantum Secret Sharing

a) In order for a set A of people to be able to reconstruct the state, the overall encoding must have
the property that it can correct for the erasure of the qubits held by people not in A. That is, A
is an authorized set if the encoding corrects erasure errors for the qubits held by the complement
{1, . . . , n} \A of A.

b) The set B of people has no information if the density matrix ρB held by the people in B is independent
of the encoded state |ψ〉. If this is not true, then people in B can always gain some information about
|ψ〉 by making an appropriate measurement that would partially distinguish ρB(|ψ〉) from ρB(|φ〉) for
some pair of states |ψ〉 and |φ〉 with different density matrices ρB .

c) Let A and B be complementary sets. A is an authorized set iff the encoding corrects erasure errors on
B, which by the quantum error correction conditions, is equivalent to saying Tr(ρE) is independent of
encoded state |ψ〉 for all operators E acting on B. (ρ is the global density matrix.). Since E acts only
on B, Tr(ρE) = TrB(ρBE), and by choosing a basis of Es (e.g., E = |i〉〈j|), we find that TrB(ρBE) is
independent of |ψ〉 for all E iff ρB is independent of |ψ〉 for all E, which is the definition from part b
of an unauthorized set. Thus A is authorized iff B is unauthorized.

d) If A is a set containing r people, the complement B has n − r people. Since A is authorized iff B is
unauthorized, we need that r ≥ k iff n − r ≤ k − 1. Plugging in r = k, we find n − k ≤ k − 1, so
n ≤ 2k − 1. Plugging in r = k − 1, we also get n − k + 1 > k − 1, or n > 2k − 2. Thus n = 2k − 1.
These are the only allowed values for a pure state threshold quantum secret sharing scheme. Note that
n must be odd.

In fact, quantum secret sharing schemes do exist for these parameters, and the construction uses
quantum error-correcting codes, but we will not encounter the appropriate codes until later in the
course.
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