
Problem Set #9

Quantum Error Correction
Instructor: Daniel Gottesman

Due Tues., March 20, 2007

Problem #1. Entanglement-Assisted Quantum Error Correction
Suppose Alice wants to send qubits to Bob through a noisy quantum channel (assume their local quantum

gates are perfect). She and Bob conveniently have some perfect pre-shared entanglement, but they have no
classical communications channel. One solution is to use the quantum channel and the entanglement to send
classical information, which they then can use (with additional entanglement) to teleport the qubits to Bob.
However, there is a more direct route which we will explore in this problem.

a) Suppose Alice and Bob share one EPR pair. Let Alice take two qubits she wishes to transmit to Bob
and her half of the EPR pair, and perform some Clifford group encoding on those three qubits, which
she then sends to Bob. Bob then ends up with four qubits (his half of the EPR pair, plus Alice’s three
qubits). Show that there is a possible Clifford group operation for Alice so that, in the absence of
noise, Bob’s four qubits are in a codeword for a 4-qubit error detecting code. When there is noise, in
the form of a one-qubit error in the channel, show that Bob can detect it.

Alice sent two logical qubits to Bob via three physical qubits, and used up one EPR pair. Suppose
Alice wishes to replace the EPR pairs used up in the protocol. She could do this by sending half
of another EPR pair using one of her two transmitted qubits. She then has transmitted one logical
qubit to Bob via three physical qubits, with one EPR pair used catalytically (i.e., it was used but
replaced). Since the code detects one error, this is better than Alice and Bob could have done without
a pre-shared EPR pair.

b) Suppose we have any r independent Pauli operators Mi (r ≤ 2n) acting on n qubits. The Mis need
not commute with each other. Show that there is some stabilizer (i.e., an Abelian subgroup of the
Pauli group) with r generators Mi ⊗Ni acting on n + n′ qubits. What is the smallest value of n′ that
will suffice? (Note that n′ may depend on the particular choice of the set of Mis.)

c) Suppose that Alice and Bob share n′ EPR pairs. The stabilizer code from part b encodes k′ qubits.
Alice is going to send n total qubits to Bob, consisting of k′ data qubits, plus her halves of the n′ EPR
pairs, plus n − k′ − n′ ancilla qubits which begin as |0〉 states. Show that Alice has a Clifford group
operation which she may perform on her n qubits so that, in the absence of noise, Bob’s n + n′ qubits
at the end of the protocol form the stabilizer code from part b.

d) Consider the encoding from part c again. If there is noise in the channel, Bob can detect it by
measuring the syndrome of the code. Recall that the noise can only act on the n qubits sent by Alice.
Characterize the detectable and undetectable errors referring only to the Mis (not the Nis). If Alice
uses the protocol from part c catalytically (replacing the EPR pairs used), how many logical qubits k
can she send (in terms of n, r, and n′)?

Note that this problem gives us a way to convert any subgroup of the Pauli group, not just an Abelian
subgroup, to an entanglement-assisted stabilizer-like code.
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Problem #2. Two-Way Entanglement Distillation

a) Suppose we take two Werner states, produced from perfect EPR pairs |Φ+〉 via a depolarizing channel
with total error probability p. Alice and Bob each perform a CNOT from the first noisy pair to the
second, then each measures the second pair in the Z basis, and they compare results over their two-way
classical communications channel. If both pairs were noiseless, the remaining state would be |Φ+〉, but
of course in general they are not. Alice and Bob keep the first pair if the measurement results on the
second pair are the same and discard it if they are not. Show that the resulting state is also a mixture
of Bell states. What is the probability that they keep the pair?

b) When Alice and Bob do keep the pair, what are the three probabilities (conditional on keeping the
state) that it has an X, Y , and Z error, respectively? Suppose they perform Clifford twirling after the
measurement, restoring the state to a Werner state. What is the total error probability? Show that
when p < 1/2, this procedure decreases the error rate.

c) In the case where they discard the first pair, calculate the probability of having each of an X, Y , or Z
error on it, conditioned on discarding it.
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