
Problem Set #8

Quantum Error Correction
Instructor: Daniel Gottesman

Due Tues., March 13, 2007

Problem #1. Fault-Tolerance With SWAPs Within a Code Block
As mentioned in class, one approach to dealing with nearest-neighbor gates is to perform SWAPs to move

qubits to where they are needed. SWAPs do not propagate errors, but a single faulty SWAP gate can cause
two errors, possibly in the same block of the code. We investigate fault-tolerance under this possibility.

a) Modify EC properties 1 and 2 and gate properties 1 and 2 (for a code that corrects t errors) in order to
allow gadgets where one faulty location during the gadget can cause two errors in the same code block.
(But we don’t allow any greater error propagation than before.) In particular, we want definitions
where the usual fault-tolerant constructions will work when the qubits are moved around with SWAP
gates which may interact qubits within a single code block.

b) Show that if we use a code correcting t = 2 errors but still require that a “good” extended rectangle
contains at most one faulty location, then a good extended rectangle satisfies the same correctness
property as before. (You may show it only for the case of a gate extended rectangle.)

c) Now consider an error model where there is additional source of errors that affects neighboring pairs
of physical qubits regardless of whether or not there is a gate between them. Assuming that a single
fault in a gadget could be either a faulty location in the old sense or one of these additional two-qubit
errors, show that the properties from part a still apply.

Describe the behavior of the SWAP gate error model and the two-qubit correlated error model under
concatenation. How is it unusual compared to the situation we considered in the lecture? Note any
differences between the SWAP gates and two-qubit correlated errors in the behavior under concatena-
tion.

Problem #2. Pseudothresholds for Fault-Tolerance
For this problem, we will study the classical reversible concatenated fault-tolerant circuits from problem

2 on problem set 7 when we allow different error rates for the different types of gates. In order to keep
everyone on the same page, assume the fault-tolerant error correction circuit is the one from the solution
set, i.e., it has 6 state preparations, 12 waits, 12 CNOTs, and 3 Toffoli gates.

a) Let us lump together bit preparations, waits, and single-bit gates (i.e., the NOT gate) for simplicity.
Find the failure probability of extended rectangles (that is, the probability of the rectangle being bad)
for single-bit operations, CNOTs, and Toffoli gates in terms of p0(single), p0(CNOT), and p0(Tof), the
error rates for physical single-bit operations, CNOTs, and Toffolis, respectively. (Remember to use the
largest extended rectangle for the different types of locations lumped into single-bit operations.)

b) Assume that the physical (unencoded) error rates satisfy p0(single) = p, p0(CNOT) = 2p, and
p0(Tof) = 3p. A pseudothreshold for a given level j of encoding and given type R of extended rectangle
is defined to be the error rate pT (j, R) for which p0(R) ≤ pT (j, R) implies that pj(R) ≤ p0(R) (where
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pj(R) is the failure rate of the extended rectangle of type R under j levels of concatenation). It is
generally sufficient to find pT (j, R) by solving the equation p0(R) = pj(R).

Find the pseudothresholds for the three types of extended rectangles with one level of encoding.

c) Under the same assumption in part b, calculate the pseudothresholds for the three types of extended
rectangles with two levels of encoding. Note that the pseudothresholds at level 2 are different from the
values at level 1 — this is why they are just pseudothresholds and not true thresholds. In general, the
pseudothreshold for a given type of extended rectangle may increase or decrease with level.

d) When we let the error rates be different for different physical gates, there is no longer a threshold value
but a threshold surface, the boundary of the region (in this case, a 3-dimensional region) for which the
set of physical error rates leads to arbitrarily low logical error rates at high levels of concatenation.
In order to study the threshold surface, we frequently look at rays from the origin with a fixed ratio
of error rates for the various gates, such as the 1 : 2 : 3 ratio used in parts b and c. For a particular
ray, we are then interested in the point of intersection of that ray with the threshold surface. The
coordinates of that point will then determine a set of simultaneous thresholds for the various gates —
if all gate error rates are below these values, then concatenation will drive the logical error rates to 0.

Use the results of part b and/or c to set lower bounds on the coordinates of the points where the
1 : 2 : 3 ray intersects the threshold surface.
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