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What’s Left For Fault-Tolerance?

• Reduce the overhead (in space and in time) 
needed for fault-tolerance

• Better fault-tolerance in 1D?

• Better magic state protocols

• Fault tolerance for specified noise models

• Fault tolerance for specified gate sets

• Exponential self-correcting codes

• Fault-tolerant adiabatic quantum computation

• Improving the threshold could always help
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1. Unifying properties of 
fault-tolerant gates.

2. Properties needed for 
a code family to give a 
threshold.

3. Achievable overhead 
compatible with 
threshold existence.



Types of Fault-Tolerant Gates

There are three classes of constructions of FT gates:

• Transversal gates

Non-universal, but very efficient

• Ancilla constructions

classical

code block #1

code block #2

E.g., magic states

Require much extra space for ancilla 
factories

• Path-based gates
For topological codes

Low space overhead, but significant 
time overhead

Some codes have more than others

• Other constructions



Code Deformation

What does it mean, in circuit terms, to do a path-based gate for a 
topological code?

Qubits are 
encoded as 
lattice defects

To perform 
gates, we move 
the defects

Eventually, the 
defects return 
to their starting 
location

To move a defect, 
we rearrange the 
local stabilizer 
generators.

That is, we deform through a series 
of topological codes, eventually 
returning to the original code.



FT Gate Type and Error Models

Why do we use certain types of fault-tolerant gates with certain kinds 
of code?

The gate type must match the error model handled by the code.

A standard block code 
corrects errors of weight t

Transversal gates preserve 
the weight of errors

Topological codes correct 
physically local errors

Small code distortion 
keeps local errors local

If we pick a code which corrects a different error model, we must use 
fault-tolerant gates that preserve that type of error.  E.g., phase error 
correcting code needs diagonal transversal gates.



Gates Which Make Errors Worse

Transversal gates have a notable advantage over path-based gates:
Small code distortion spreads out errors, whereas transversal gates 
leave the same number of errors per block.

Consequently, during code distortion, one must periodically stop to do 
error correction.

For block codes, we can also 
consider gates which slightly 
increase the number of 
errors.  Aharonov and Ben-Or 
(quant-ph/9906129) called this 
property “spread.”  (I.e., a gate 
with spread 2 could double 
the number of errors.)

EC EC

Disadvantage: Effective error-tolerance of the code is reduced.



Infinitesimal Generation of Gates

Unitary gates cannot be performed instantaneously.  They must be 
generated from a series of smaller infinitesimal gates.

This is why fault-tolerance for phase-correcting 
codes requires diagonal gates (Aliferis & 
Preskill, 0701.1301, Peter Brooks talk), even 
though CNOT, for instance, maps phase errors 
to phase errors.

U = eiHt

Topological gates are 
generated by infinitesimal 
code deformation.

Transversal gates can 
always be generated 
by infinitesimal 
transversal gates.



Codes Deformed by LU Operations

Infinitesimal transversal operations map ((n,K,d)) QECCs to different 
((n,K,d)) codes.

Transversal gates are performed by code deformation under LU.

〈|0〉,|1〉〉⊗ |0000〉

〈|00000〉,|11111〉〉

Classify K-dim subspaces by local unitary equivalence.  They form 
connected components, corresponding to inequivalent codes.

5-qubit code

(Work with Lucy Liuxuan Zhang)



Transversal Gates Are Topological

Logical X

Logical Z

Stabilizer 
generator

Logical U
(Permutes 
Paulis X   Y   Z)

Each component under LU forms a manifold.  To implement a 
transversal gate, we perform a loop on this manifold.

We can think of the manifold 
as a vector bundle.  I.e., each 
point has a K-dimensional 
subspace attached to it.

LU gates map the subspace at 
one point of the manifold to 
the subspace at another 
point.  This gives a connection 
(parallel transport).Small loops must be 

trivial (see, e.g., Eastin 
& Knill, 0811.4262). Therefore the connection is flat.

Transversal gates are associated with topologically 
non-trivial paths on the manifold.

(Work with Lucy Liuxuan Zhang)



Ancilla and Other Constructions

Magic state and other ancilla-based constructions can be understood in 
a similar way.  They involve first imbedding the manifold in a higher-
dimensional manifold, and then following a topologically non-trivial path.

A similar statement can be made of 
ancilla injection procedures for 
topological codes.

Some miscellaneous other fault-
tolerant gate constructions are 
known (e.g., Toffoli gate for 
polynomial codes in Aharonov & 
Ben-Or, quant-ph/9906129).  All 
involve leaving the code and then 
returning to it later.  This is a 
universal property of fault-tolerant 
gates.



What Do We Need For a Threshold?

Thresholds have been derived for concatenated codes and for 
topological codes.  Can we get a threshold using other codes? (In 
particular, can we get a threshold using more efficient codes?)

Not necessary to have a good distance d/n, nor is it necessary to have a 
vanishing rate k/n.

To have a threshold, the first thing we 
need is a family of QECCs using n 
physical qubits, with n →∞.  The family 
should have the following properties:

• Corrects a constant fraction of 
likely errors (prob. p per qubit).

• Probability of a logical error → 0 
as n →∞.

• Efficient decoding algorithm.



Threshold: Gates and Measurement

To get a threshold,  we need a universal set of fault-tolerant 
gates and fault-tolerant measurements for the family of codes.  
It must work even when the block size gets large.

For CSS codes, CNOT gate and X or Z 
measurement can always be done transversally.  
We can then compose a universal set of gates 
given an appropriate set of magic states.

For a general stabilizer code, gates 
and measurements can be done 
using Knill error correction, which 
requires appropriate ancilla states.

H

U

Transversal

Logical

Given a reliable source of appropriate ancilla states, gates and 
measurements can be done safely even for large codes.



Threshold: Error Correction

There are three known methods of FT error correction:

• Shor: For any stabilizer code.  
Requires cat states the size of the 
stabilizer generators and needs 
repetition of syndrome measurement.
• Steane: For CSS codes.  Requires 
states encoded in block of the code.  
No syndrome repetition needed.
• Knill: For any stabilizer code.  
Requires EPR pairs encoded in block 
of the code.  No syndrome repetition 
needed.
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Steane and Knill EC can be done for big blocks whenever we can 
encode codewords.  Shor EC is only viable for LDPC codes, as big 
cat states are inherently unstable. 
(LDPC = low density parity check)



Threshold: State Preparation

State preparation is often done in two stages: Encoding & Distillation.

Encoding involves creating a 
fully-encoded state with a low 
but not very low logical error 
rate.

Then distillation usually involves 
comparing many copies of the poor 
encoded state to produce a smaller 
number of better encoded states.

Distillation procedures work even for very big block sizes but require 
some fault-tolerant gates.  It can definitely be made to work for CSS 
codes, and probably for any stabilizer code.

Thus, given a family of codes, we only need to figure out encoding.



Progressive Encoding

• For concatenated codes, we encode level-by-level, stopping at 
each level to perform error correction and state distillation.
• For topological codes, we encode by making first a small code 
and growing it, stopping periodically for EC and state distillation.

In order to make large ancilla 
blocks, we need progressive 
encoding: the ability to move 
to a larger member of the 
code family with a small circuit.



Threshold Existence: Summary

• CSS (or maybe stabilizer) codes.

• Corrects a constant fraction of likely errors (prob. p per qubit).

• Probability of a logical error → 0 as n →∞.

• Efficient decoding algorithm.

• Progressive encoding

Summarizing, a code family with these properties gives a threshold:



What is the Minimal Overhead?

What is the minimum overhead (ratio of physical qubits to logical 
qubits) required for a fault-tolerant threshold to exist?
For purposes of this discussion, assume free classical computation.

Obviously, we will want to use a 
family of codes that has a good rate 
(ratio logical qubits/ physical qubits).  
Can we have overhead ≈ rate?

However, Steane error correction will 
never give us an overhead better than 2, 
and Knill error correction cannot do 
better than an overhead of 3.

H

H

U

Transversal

Logical
We need to use Shor EC and LDPC codes.



Keeping Gate Overhead Down

If we encode all qubits in one block, the ancilla blocks we need will 
drive the overhead much higher than the rate.  The following tricks 
let us do gates with minimal overhead:

• Encode only O(K/polylog K) 
logical qubits per block when 
there are K total logical qubits.
• Perform logical gates on only 
one block at a time.

Then, only one ancilla block is 
needed at a time, and it has size 
sublinear in the total system size.

Note: block size cannot be too small or logical errors are not 
sufficiently suppressed.



EC and Preparation Overhead

For error correction, every block must get attention, but it doesn’t 
need attention every time step.  Instead, perform EC on only a 
constant fraction of blocks at any given time.  Then the extra 
overhead spent on cat states can be made arbitrarily small.
The cost is that resistance to storage errors decreases.

Even without progressive encoding, we can encode by using another 
family of codes (e.g., concatenation) -- perform the LDPC encoding 
using FT concatenated gates, then decode the concatenated code.

This uses polylog overhead, so only encode one block at a time.



Threshold with Constant Rate?

In short, if a family of QECCs exists with the following properties:

• Low density parity check codes.

• Corrects a constant fraction of likely 
errors (prob. p per qubit).

• Constant rate R as n →∞.

• Probability of a logical error → 0 as 
n →∞.

• Efficient decoding algorithm.

• Robust against syndrome bit errors.*

Then:

There exists a threshold error rate for polynomial length 
computations, with overhead arbitrarily close to 1/R.

* In Shor EC, syndrome bit errors can cause errors on multiple qubits.

LDPC



Summary

• All fault-tolerant gates move 
through a family of codes to return 
to the starting code.  The logical gate 
performed is a topological effect.

• To find a new family of codes with a 
threshold, the main property needed 
is progressive encoding.

• Based on what we know now, there 
seems no fundamental limit to 
overhead for a threshold.  Indeed, if a 
good family of LDPC codes exist, a 
threshold exists with the same rate 
as the code family.

LDPC


