
Solution Set #1

CO 639: Quantum Error Correction
Instructor: Daniel Gottesman

Problem 1. Uncorrectable Errors and the Nine-Qubit Code

a) The nine-qubit code can correct one bit flip error in each set of three qubits, plus one phase error.
Also, two phase errors in the same set of three qubits act the same on the codewords, so do nothing to
the state (the product is in the stabilizer). Thus, the code can correct X2X7, X5Z6, and Z5Z6. X1X3

cannot be corrected because it involves two bit flip errors in the same set of three, and Y2Z8 cannot
be corrected because it involves two phase flip errors on different sets of three (the bit flip part of Y2

can be corrected, however).

b) For X1X3, the error correction procedure notes that qubit number 2 is the misfit, and “corrects” it by
performing the bit flip operation X2. Thus, the net effect is to flip all of the first three qubits. Thus,
the encoded |0〉 state does not change (as |000〉 + |111〉 becomes |111〉 + |000〉), but the encoded |1〉
state becomes −|1〉 (as |000〉 − |111〉 becomes |111〉 − |000〉). That is, α|0〉+ β|1〉 becomes α|0〉 − β|1〉;
the logical operation is an encoded Z.

For Y2Z8, we can write Y2 = iX2Z2. The code can correct X2, but the residual phase error Z2Z8

cannot be corrected. (The factor i is an overall phase, which has no physical significance and does
not count as an error.) The correction procedure notes that the phase on the middle block of three
is different, and tries to fix it with a Z5, say, making the overall error a Z2Z5Z8. Thus, |000〉 + |111〉
becomes |000〉 − |111〉 on all three blocks and vice-versa, changing |0〉 into |1〉. This is a logical X
operation: α|0〉+ β|1〉 becomes β|0〉+ α|1〉.

Problem 2. Maximally Entangled States and QECCs

a) To test if a three-qubit state is maximally entangled, we only need to check that the density matrix of
any single qubit of the state is the identity. For the GHZ state, this is clearly true. The stabilizer of
the GHZ state is generated by {X ⊗X ⊗X,Z ⊗ Z ⊗ I, I ⊗ Z ⊗ Z}.

b) First, note that
〈ψ|E|ψ〉 = Tr(ρE), (1)

where ρ is the density matrix of |ψ〉 on the qubits where E acts. For wtE ≤ n/2, by the definition of
a maximally entangled state, ρ = I. Thus, Tr(ρE) = TrE = δE,I (since the Pauli matrices X, Y , Z
have trace 0). Therefore, |ψ〉 is an [[n, 0, d]] code with d = bn/2c+ 1.

c) Using the arguments in the last part, we see that Tr(ρE) = δE,I whenever wtE ≤ n/2. The Pauli
operators form a basis for the set of matrices, so we can expand ρ =

∑
P∈P cPP , where P is the Pauli

group, and the {cP } are real numbers (real, not complex, since ρ is Hermitian). Then Tr(ρE) = cE ,
and we find cE = δE,I , so ρ = I. Thus, the state is maximally entangled.

d) The 5-qubit code is a nondegenerate [[5, 1, 3]] stabilizer code. Note that for a stabilizer code of distance
d, when wtE < d and |ψ〉 is a codeword, 〈ψ|E|ψ〉 is either 0 (when E anticommutes with some element
M of the stabilizer, thereby taking |ψ〉 to an orthogonal eigenspace of M) or 1 (when E is in the
stabilizer). For a nondegenerate stabilizer code, it is therefore always 0 (except for E = I). Thus, any
valid codeword of the [[5, 1, 3]] code will be a maximally entangled state — for instance, the encoded
|0〉 state (which is written out in ket notation in problem 6).

1

e) If we had just taken the k = 0 limit of the usual QECC conditions, we would have gotten

〈ψ|E|ψ〉 = CE , (2)

which is completely vacuous — all states |ψ〉 satisfy this condition.

Problem 3. Other Forms and Consequences of the QECC Conditions
First, there is a typo in this problem, which is probably obvious: eqs. (3) and (4) should both read E†

aEb,
not E†

aE
†
b .

a) Let |ψ〉 =
∑

i αi|i〉, with
∑

i |αi|2 = 1. This notation is for the unencoded states, but the same relation
immediately follows for the encoded states: |ψ〉 =

∑
i αi|i〉. From eq. (3) of the problem set, it follows

that

〈ψ|E†
aEb|ψ〉 =

∑
i,j

α∗jαi〈j|E†
aEb|i〉 (3)

=
∑
i,j

α∗jαiCabδij (4)

= Cab. (5)

Conversely, let us start from eq. (4) of the problem set and consider the states |i〉 ± |j〉 (for i 6= j).
Then

〈i|E†
aEb|i〉+ 2 Re〈i|E†

aEb|j〉+ 〈j|E†
aEb|j〉 = Cab (6)

〈i|E†
aEb|i〉 − 2 Re〈i|E†

aEb|j〉+ 〈j|E†
aEb|j〉 = Cab, (7)

so
2 Re〈i|E†

aEb|j〉 = 0. (8)

Similarly, by considering |i〉 ± i|j〉, we find that

2 Im〈i|E†
aEb|j〉 = 0. (9)

The remaining condition,
〈i|E†

aEb|i〉 = Cab, (10)

is just part of eq. (4) without any manipulation.

If |ψ〉 were only required to run over basis states in eq. (4) of the problem set, the condition would not
work. For instance, we can choose a stabilizer with n generators, and define |i〉 to be the state with
error syndrome i (an n-bit vector). All of these 2n states have the same Cab, even if we let Ea and
Eb be arbitrary Pauli errors (of any weight) but the code clearly cannot correct all these errors, since
Pauli operators map the states with various syndromes into each other.

b) Let ρ(|ψ〉) be the density matrix of |ψ〉 on some particular set of d− 1 qubits. Eq. (4) of the problem
set says that

Tr(ρ(|ψ〉)E) = Tr(ρ(|φ〉)E) (11)

whenever E is Pauli matrix of weight d − 1 or less. As in the solution to problem 2c, we can expand
the density matrices in terms of the Pauli operators: ρ(|ψ〉) =

∑
cP (|ψ〉)P and ρ(|φ〉) =

∑
cP (|φ〉)P ,

and the above equation then becomes simply the statement that cE(|ψ〉) = cE(|φ〉) for all E of weight
d − 1 or less, which are all that are required to expand a density matrix on d − 1 qubits. Therefore
ρ(|ψ〉) = ρ(|φ〉).

c) We can just take the argument of the previous part backwards: ρ(|ψ〉) = ρ(|φ〉), therefore cE(|ψ〉) =
cE(|φ〉), therefore Tr(ρ(|ψ〉)E) = Tr(ρ(|φ〉)E), and therefore we have eq. (4) from the problem set,
which from part a is equivalent to the usual QECC conditions.

2

Problem 4. Correcting X and Z, but not Y

a) This problem was badly phrased to make it harder than I had intended (although there is actually a
solution to the harder version of the problem). It was sufficient to find a code, as given below, that
corrects X and Z errors, but cannot distinguish Y errors from each other. The code below can correct
a Y error on, say, the first qubit, if you know that is the only place a Y error can occur.

We can choose as generators of this stabilizer:

X X X X X X X X
Y Y Y Y Y Y Y Y
Y Y Y Y I I I I
Y Y I I Y Y I I
Y I Y I Y I Y I

(12)

Basically we are using the first generator to tell if the error is an X or a Z, and the last 4 generators to
see where the error is. The last 4 generators give a version of the classical Hamming code (it is called
the “extended” Hamming code because it adds an extra bit), and allow a binary search on the 8 bits
to locate the error. Since the last 4 generators are made of just Y s they can identify the location of
an X or Z error, but tell us nothing about Y errors, with which they commute. This code can detect
a Y error, but we will know nothing about where it is. The distance of this code is 2: Y ⊗ Y (on any
two qubits) will commute with all the generators of the stabilizer, and is outside the stabilizer. Any
one-qubit Pauli operator anticommutes with some generator of the stabilizer (Y or Z on any qubit
anticommutes with the first generator, X on any qubit anticommutes with the second generator).

b) Since the code corrects Xa and Za, by the error-correction conditions,

〈j|XaZa|i〉 = Cδij , (13)

so the code can detect the error Ya. Therefore the code has distance at least 2. Of course, if the distance
were 3 or more, the code could actually correct all single-qubit Y errors, so in fact the distance of the
code must be exactly 3.

Problem 5. Combining Stabilizer Codes

a) Clearly the Mi ⊗ In2 commute with each other, since the Mi’s do, and the In1 ⊗ Nj commute with
each other similarly. But Mi ⊗ In2 also commutes with In1 ⊗Nj , since they are each I where the other
is nontrivial, so we have an Abelian group and a stabilizer code S = S1 ⊕S2 using n = n1 +n2 qubits.
There are n1 − k1 M generators and n2 − k2 N generators, for a total of r = n1 + n2 − (k1 + k2), so
the number of encoded qubits is k = n− r = k1 + k2.

Suppose E is an error which is not detected by the code S1. That is, E commutes with all generators
of S1, but is not in S1. Then, clearly, E ⊗ In2 commutes with the generators of S, but is not in S,
and is therefore not detected by S either. Conversely, if E is detected by S1, either E ∈ S1, in which
case E ⊗ In2 ∈ S1, or E anticommutes with some generator Mi of S1, in which case E ⊗ In2 also
anticommutes with the generator Mi⊗In2 of S. Similarly, if F is or is not detected by S2, then In1 ⊗F
is or is not detected by S as well.

The distance of S1 is d1 and the distance of S2 is d2. That means that there exist errors E and F of
weight d1 and d2, respectively, which are not detected by S1 and S2. Thus, there is a Pauli operator
of weight d = min(d1, d2) which is not detected by S. Conversely, any operator of weight less than d
can be written E ⊗ F , where E has weight less than d1 (and is therefore detected by S1) and F has
weight less than d2 (and is therefore detected S2). We have four cases:

• E and F anticommute with some generator of S1 and S2, respectively. In this case, clearly the
product is detected by both the M generators and the N generators, and is therefore detected by
S.

3

• E ∈ S1 and F anticommutes with a generator of S2. In this case, E ⊗ F is detected by an N
generator, so is still detected by S.

• F ∈ S2 and E anticommutes with a generator of S1. In this case, E ⊗ F anticommutes with an
M generator, so is detected by S.

• E ∈ S1 and F ∈ S2. In this case, E ⊗ In2 and In1 ⊗ F are both in S, which is closed under
multiplication, so E ⊗ F ∈ S as well.

In all 4 cases, S detects the error E ⊗ F . That is, S detects all errors of weight less than d and fails
to correct at least one error of weight d. The distance of the code is thus exactly d = min(d1, d2).

b) Now we have generators Mi⊗Ni. These commute with each other, since [Mi,Mj] = 0 and [Ni, Nj] = 0,
so we have a stabilizer code S. This code has n = n1 +n2 total qubits and r = n1 − k1 = n2 − k2 total
generators. Therefore, k = (n1 + n2)− (n1 − k1) = n2 + k1 = n1 + k2.

As in part a, if E is not detected by S1, then E ⊗ In2 is not detected by S (and similarly if F is not
detected by S2). If E anticommutes with something in S1, then E anticommutes with something in S.
However, if E ∈ S1, it does not follow that E ⊗ In2 ∈ S, and even if both E and F anticommute with
generators of S1 and S2, it need not follow that E ⊗ F anticommutes with any generator of S: if E
and F anticommute with exactly the same numbered generators of S1 and S2 (that is, they have the
same error syndrome), then E ⊗ F will commute with Mi ⊗Ni.

Therefore, the distance of this code is at most min(d1, d2), but it could be much smaller. For instance,
if S1 has a generator of weight 1, then S would have distance 1: For instance, let S1 and S2 each be a
6-qubit code with the 5-qubit code generators on the first 5 qubits, plus an extra generator Z on the
sixth qubit (i.e., it is the 5-qubit code with an extra |0〉 qubit appended). Then Z on the sixth qubit
commutes with all generators, but is no longer in the stabilizer (although Z6Z12 would be if we order
the generators in the same way for both codes). The code thus has distance 1.

Even if we insist that S1 and S2 be nondegenerate, the distance of S could still be as low as 2: If there
are single-qubit errors E and F with the same error syndrome for S1 and S2, respectively, then E ⊗F
will commute with every element of S, but will not be in S. The distance of S could not be 1 in this
case, since any single-qubit operator would anticommute with either S1 or S2, but not both.

c) There is no reason Mi needs to commute with Nj , so in general, they need not define a QECC. If it
happens that they do commute, then k = n − (2n − k1 − k2) = k1 + k2 − n. (If n > k1 + k2, it is
impossible for all Mi to commute with all Nj .) The distance of such a code, if it exists, is at least
max(d1, d2), as any operator that anticommutes with or is in S1 or S2 also anticommutes with or is in
the combined stabilizer S. It could in some cases be larger, even much larger, as errors which fail to be
detected by one code could be picked up instead by the other. The CSS construction is an example of
this: Each code, by itself, only corrects bit or phase flip errors, and is unable to correct general errors,
and therefore has distance 1 as a quantum code. Together, however, they have a much larger distance.

Problem 6. Ket Representation of Stabilizer Codes

a) The generators of the 5-qubit code are

X Z Z X I
I X Z Z X
X I X Z Z
Z X I X Z

(14)

and we can take the encoded Z operator to be Z = Z⊗Z⊗Z⊗Z⊗Z. The encoded |0〉 state therefore
has a stabilizer with 5 generators: the 4 generators of the whole code, plus Z. The projector on |0〉 is∑
M , where the sum is taken over M in the 5-generator stabilizer. Perhaps the easiest way to write

4

down this state is find a state which is not annihilated by the projector (such as |00000〉) and just see
what we get when the projector acts on it:

|0〉 =
1
4
(|00000〉+ |10010〉+ |01001〉 − |11011〉+ |10100〉 − |00110〉 − |11101〉 − |01111〉

+|01010〉 − |11000〉 − |00011〉 − |10001〉 − |11110〉 − |01100〉 − |10111〉+ |00101〉). (15)

The terms of this sum are generated by all possible elements of the stabilizer acting on |00000〉.
Similarly, the encoded |1〉 state is a +1-eigenstate of −Z. We can use the same procedure as above,
but now |00000〉 is annihilated by the projection operator, so let us instead start with |11111〉 and do
the same procedure:

|1〉 =
1
4
(|11111〉+ |01101〉+ |10110〉 − |00100〉+ |01011〉 − |11001〉 − |00010〉 − |10000〉

+|10101〉 − |00111〉 − |11100〉 − |01110〉 − |00001〉 − |10011〉 − |01000〉+ |11010〉). (16)

It is perhaps worth noting that every basis ket appears in either |0〉 or |1〉, but the code is still able to
correct all single-qubit bit flips because of the varying phases.

b) Conceptually, we want to apply the procedure from the previous part backwards. The presence of the i
phases implies that we will have Y s in the stabilizer. We first note that we are looking for 2 generators.

To find the first, match the first two kets and the last two kets in each codeword. Each pair is related
by bit flips on the first two qubits and a phase. Thus, the possibilities are X or Y on the first qubit,
X or Y on the second qubit, and I or Z on the third qubit. To find the correct phase, note that the
first of each pair gets a phase i when it becomes the second, but the second of each pair gets a phase
−i when it becomes the first. The first kets of each pair all have even parity for the last two qubits,
while the second kets of each pair have odd parity for the last two qubits. That suggests we pick X
for the first qubit, Y for the second qubit, and Z for the third qubit, and indeed, these codewords are
fixed under X ⊗ Y ⊗ Z.

To find the second generator, we follow a similar thought process, but instead match the first and third
kets and the second and fourth kets in each codeword. This tells us we will need bit flips on the second
and third qubits. We again get factors of i going to the right and factors of −i going to the left, and
we note that the first and second kets have even parity on the first two qubits, while the third and
fourth kets have odd parity on the first two qubits. That suggests we should choose Z ⊗ Y ⊗X as the
second generator, which indeed works.

If we had paired the first and fourth kets and the second and third kets, we would have found the
operator Y ⊗ I ⊗ Y , which is also in the stabilizer (as the product of the two generators above).

5

