Problem Set #4

CO 639: Quantum Error Correction Instructor: Daniel Gottesman

Due Tues., Mar. 9

Problem 1. Phase Error Correction

- a) Consider the 3-qubit phase error-correcting code with stabilizer generated by $X \otimes X \otimes I$ and $I \otimes X \otimes X$. Write down a fault-tolerant syndrome measurement circuit for this code, including any necessary ancilla verification.
- b) Which of the following gates, when performed transversally on the code, give a valid encoded operation: CNOT, Hadamard, Phase P? (That is, do $\text{CNOT}^{\otimes 3}$, $H^{\otimes 3}$, and $P^{\otimes 3}$ preserve the coding space?) What logical gates are performed by those valid transversal operations? Can you find any other transversal operations?
- c) Find a 3-qubit phase error-correcting code with a different set of transversal operations.
- d) Suppose you have a phase error-correcting code for which transversal Hadamard returns you to the code space. Is the transversal Hadamard fault-tolerant?

Problem 2. Transversal Operations For Any Stabilizer Code

a) Given an $n \times n$ matrix A_{ij} of 0s and 1s, define a transformation A on the *n*-qubit Pauli group as follows. Let X_i and Z_i be X and Z acting on the *i*th qubit. Then

$$A(X_i) = \prod_{j=1}^{n-1} X_j^{A_{ij}}$$
(1)

$$A(Z_i) = \prod_{j=1}^{n-1} Z_j^{A_{ij}}.$$
 (2)

When does this transformation correspond to conjugation by some unitary operation U? Of those As which correspond to unitary U, which are in the Clifford group?

- b) Show that whenever A corresponds to a Clifford group operation, it defines a gate that acts transversally on an arbitrary stabilizer code.
- c) Show that any gate which acts transversally on an arbitrary stabilizer code corresponds to a transformation A as given in part a.
- d) Find a nontrivial gate that acts transversally on any stabilizer code.

Problem 3. Repeating Syndrome Measurement

a) Suppose we use Shor error correction for the 7-qubit code, including ancilla verification, but without repeating the syndrome measurement. Give an example of a place where a single error somewhere in the circuit can cause two errors in the final encoded state.

- b) Now suppose we use Steane error correction, including the ancilla verification, but do not repeat the syndrome measurement. Can you find a place where a single error somewhere in the circuit can cause two errors in the final encoded state?
- c) For the five-qubit code, draw the circuit to measure the logical \overline{X} operator using the Shor cat state method. (You may omit the verification of the cat state.) Give an example of a place where a single error in the circuit can cause us to have the wrong measurement outcome.
- d) Suppose we repeat the measurement by performing this circuit twice and get the same result both times. Show that we could still have the wrong outcome, even if only a single error occurred in the circuit and/or initial state. Can this be remedied? That is, can you find a way of measuring the encoded \overline{X} operator for the five-qubit code that is robust against single errors? (Of course, two errors can cause the code to fail anyway.)

Problem 4. Measurements and Stabilizers

- Suppose we start a system with the state $|\psi\rangle \otimes |0\rangle$, measure $Y \otimes X$, and then measure $I \otimes Y$.
- a) What Pauli operations do we need to perform following each of the measurements to steer the state into the +1-eigenstate of each measured operator?
- b) Compute the action of the above series of operations (with Pauli corrections) on the \overline{X} and \overline{Z} operators. Describe the overall action in terms of standard gates.
- c) Suppose we had started with the input state $|\psi\rangle \otimes (|0\rangle + |1\rangle)/\sqrt{2}$ and then performed the same two measurements. What would have happened then?

Problem 5. Compressed Teleportation Constructions

- a) Find a two-qubit circuit that allows Alice to transmit one qubit to Bob using 1 CNOT gate from Alice to Bob (Alice has the control qubit and Bob has the target qubit) and 1 bit of classical communication (plus as many single-qubit Clifford group gates as you like).
- b) Find another circuit for the same task, but this time with a CNOT gate from Bob to Alice.
- c) Let the $\pi/8$ rotation gate be the diagonal matrix diag $(1, e^{i\pi/4})$ (so the $\pi/8$ gate is a square root of P). Note that $\pi/8 \otimes I$ commutes with CNOT (although $I \otimes \pi/8$ does not). Use this fact and one of the compressed teleportation circuits from parts a and b to find a single-qubit ancilla and corresponding fault-tolerant circuit that allows us to perform a $\pi/8$ gate on an encoded state of the 7-qubit code (or any other code which allows all transversal Clifford group operations).