
CO 639 — Quantum Error Correcting Codes

CSS Codes & GF (4) codes

Scribe: Niel de Beaudrap
Edited by Daniel Gottesman

January 29, 2004

1 CSS codes, continued

As we saw in the last lecture, a CSS code uses two classical linear codes, and uses them to correct
different kinds of Pauli errors. We come up with two classical linear codes C1 (an [n, k1, d] code) to
correct bit-flip and phase-flip errors, respectively. We do this by taking the parity check matrix H1

from the code C1 , and replacing all the entries with the rules 0 7→ I , 1 7→Z , and we do the same with
the parity check matrix H2 from the code C2 , except we replace 1 7→X . C1 then contributes n − k1

stabilizer generators, and C2 gives us n − k2 generators, for a total of 2n − k1 − k2 . In order for the
generators contributed by the two codes to commute, we also require C2

⊥ 6 C1 , so that the rows of
H2 (which is the generator for C2

⊥) lie in the kernel of H1 . The quantum error correcting code that
results will then be a stabilizer code encoding k1 + k2 − n qubits.

1.1 Distance of CSS codes

At the end of the last class, we convinced ourselves that d = min{d1, d2} , but we then saw that this
produced a contradiction: the 9-qubit code has a CSS construction, and has distance 3 (because it
corrects any single qubit error), but the phase-correction part of the code only has distance 2. How do
we resolve this apparent contradiction? The answer is that, in fact, we can only prove d > min{d1, d2} .

Is there a more fundamental way to understand why d 6= min{d1, d2} is not necessarily true? The
argument we used last lecture was based on what the CSS code could hypothetically correct, but
remember that the definition of distance is more in terms of detection than correction. If our original
argument was flawed, it may be better to talk about things more in line with this definition.

First of all, it is clear that d > min{d1, d2} is true: if an error of weight less than min{d1, d2} errors
occurs, that error operator will anticommute with stabilizer generators contributed by C1 and also ones
contributed by C2 , and so it will be detected. What about an error with weight exactly min{d1, d2} ?
For the sake of argument, suppose d2 < d1 . Even if we have an error E of weight d2 which C2

cannot detect, if it contains any X or Y operators, C1 will still be able to detect it, because it will
anticommute with one or more stabilizer generators from C1 . Even if E contains only Z operators (and
thus commutes with the stabilizer generators from C1), it might be the case that E is generated by the
generators from C1 , in which case it would be in the stabilizer, and have no effect on encoded states.

1

(This is exactly what happens in the case of the 9-qubit code.) So, we cannot prove anything definitive
in this case beyond just d > min{d1, d2} .

1.2 Constructing codewords

The stabilizer notation is quite useful, but it is also useful to know what the actual encoded states
look like. For stabilizer codes, we can find a state that lies in the codespace in a straightforward way.
Recall that the projection operator Π onto the the codespace can be given by

Π =
1

|S|

∑

M∈S
M (1)

(where S is the stabilizer). Taking an arbitrary standard basis state |a〉 , we can calculate the projection
of |a〉 into the codespace,

Π |a〉 =
1

|S|

∑

M∈S

[

M |a〉
]

. (2)

In the unlikely event that |a〉 is orthogonal to the codespace, one keeps trying until obtaining a basis
state |a′〉 that isn’t orthogonal to the codespace. When one finally obtains a non-zero vector as the
result of applying the projection operator, the normalized vector will be a state in the codespace.

In general, the above procedure will require a lot of time to calculate, because the stabilizer grows
exponentially with the number of generators. For CSS codes, however, there is a much simpler way
of determining states in the codespace. As we saw, the number of encoded qubits in a CSS code is
k = k1 + k2 − n . Re-expressing this in terms of the dimensions of C1 and C2 , we have

k = dim C1 + dimC2 − n = dim C1 − dim C2
⊥ .

Recall that C2
⊥ 6 C1 : then, the number of cosets of C2

⊥ in C1 is the same as the number of standard
basis states that our CSS code has to encode. We can use this to motivate an idea of how to construct
the encoded standard basis states in a CSS code.

Consider an arbitrary codeword u ∈ C1 , and construct the quantum state

|u〉 =
1

√

|C2
⊥|

∑

w∈C2
⊥

|u + w〉 (3)

Because C2
⊥ 6 C1 , the vector u + w is in C1 for all w ∈ C2

⊥ . As a result, u + w will satisfy all of the
parity checks of C1 : the stabilizer generators from C1 all have eigenvalue +1 for |u + w〉 , and so it will
leave the encoded state |u〉 undisturbed.

If u ∈ C2
⊥ , the state |u〉 will actually be the same as

∣

∣00 · · · 0
〉

: adding u to the vectors w in the sum
of equation 3 just permutes the terms, which is the same as setting u = 00 · · · 0 . In fact, for any two
vectors u,v ∈ C1 , we have

|u〉 = |v〉 ⇐⇒ u + C2
⊥ = v + C2

⊥ ⇐⇒ u− v ∈ C2
⊥ (4)

So, we can’t just take codewords u ∈ C1 to encode standard basis states. However, we can take
(representative elements of) cosets in the quotient set C1 / C2

⊥ to encode standard basis states. As we

2

noted above, there are exactly the right number of these cosets to encode the 2k standard basis states
that we need to encode.

We haven’t yet shown that this encoding is preserved by the stabilizer generators contributed by C2 .
We can do this most easily by observing what happens when we apply Hadamards to each qubit:

1
√

|C2
⊥|

∑

w∈C2
⊥

|u + w〉 7
H⊗n

−−−→
1

√

2n |C2
⊥|

∑

h∈Z2
n

∑

w∈C2
⊥

(−1)h·(u+w) |h〉

=
1

√

2n |C2
⊥|

∑

h∈Z2
n



(−1)h·u
∑

w∈C2
⊥

(−1)h·w |h〉





=
1

√

|C2|

∑

h∈C2

(−1)h·u |h〉

(5)

To check that the original state was preserved by any stabilizer generator M contributed by C2 , we can
test whether this state is preserved by the operator M ′ = H⊗nMH⊗n , which will be the same operator
except with Pauli Z operations at each qubit rather than X operations. Because each codeword k ∈ C2

satisfies the parity checks of C2 , the state H⊗n |u〉 will have +1 eigenvalue with each operator M ′ ;
then, the generators from C2 also preserve codewords. Then, the states |u〉 are code states of the CSS
code.

It may seem that the construction presented here is unbalanced, in that C1 and C2 play significantly
different roles. This is not quite true, however: if we take a state in the conjugate basis of this

construction (that is, where the encoded state is just 1√
2

(

|0〉 ± |1〉
)⊗k

), the resulting state will be

exactly the same as a codeword created in the standard basis, where we switch the roles of C1 and C2

in the construction. So, the two “different” constructions can be related to one another by a change in
basis. This is a nice symmetry of the construction, although it would not have been necessary to have
it in order for the code to work.

2 Constructing more general stabilizers using GF (4)

The CSS construction for quantum codes is very useful, but are the any others? It turns out that
another useful construction can be found by considering classical error correction codes — but instead
of using binary vectors for codewords, we use vectors over the finite field GF (4) .

2.1 Describing GF (4)

A finite field F is a finite set with two operations, addition and multiplication. The set F is an abelian
group under the addition operation (we call the additive identity 0), and the set F r {0} is also an
abelian group under the multiplication operaton (we call the multiplicative identity 1). We also have
the requirement that multiplication distributes over addition in the usual way. It turns out that we
can create a finite field of size pr , for any prime p and any r ∈ Z

+ , and that this field will be unique;
we call such a field GF (pr) . Whenever r = 1 , the resulting field is just the integers modulo p , Zp .

The field GF (4) is fairly easy to describe. The four elements are 0 and 1 (which behave much the
same as in Z2), and two additional elements ω and ω2 . The arithmetic of the field can be described

3

entirely with two equations. First of all, just as in Z2 , we have 1+1 = 0 : from this, we can also obtain
x + x = 0 for any x in the field.(1) Aside from that, we have one more equation:

1 + ω + ω2 = 0 .

These two equations characterize GF (4) entirely: for instance, we can also deduce

1 + ω = ω2

1 + ω2 = ω

ω + ω2 = 1

ω3 = 1 .

2.2 Using GF (4) to describe Pauli operators

The reason for choosing GF (4) is simple: there are the same number of elements of GF (4) as there are
single-qubit Pauli operators. Then, instead of using classical linear codes over {0, 1} = Z2 , we can use
a classical linear code over GF (4) , and map

0 7−→ I

1 7−→ X

ω 7−→ Z

ω2 7−→ Y











(arbitrary order)

to form Pauli operators in the same way as we have been doing for parity check matrices to obtain Pauli
operators. Just as with binary vectors, adding two vectors over GF (4) corresponds to multiplying two
Pauli operations.

In the 2n-dimensional representation of Pauli operators, we used the symplectic inner product to
describe when two operators would commute. In this GF (4) representation, we have something which
plays the same role, and which makes good use of the algebraic machinery of the field.

Because x + x = 0 for any x ∈ GF (4) , the map x 7−→ x2 is a linear transformation (in the sense of
respecting additions, and scalar multiplication by elements of Z2). We sometimes refer to x2 as the
conjugate of x , and write x = x2 . We can extend this in a natural way to vectors over GF (4) : for
instance, if we have a vector v = [v1 v2 · · · vn] , we would define

v = [v1 v2 · · · vn] =
[

v1
2 v2

2 · · · vn
2
]

. (6)

This is also clearly a linear transformation. As well, for any x ∈ GF (4) , we define the trace of x by
the formula

tr(x) = x + x = x + x2 . (7)

Then, the symplectic inner product can be described by the formula

(

u
∣

∣v
)

= tr(u · v) =
∑

j

tr(ujvj) , (8)

so that the Pauli operators arising from u and v commute exactly when tr(u · v) = 0 .

(1)This is actually common to all fields of size 2r : it’s a special case of the rule [∀x ∈ GF (pr)] : px = 0 , which holds
for prime p in general.

4

To show this, first notice that tr(0) = tr(1) = 0 , and tr(ω) = tr(ω2) = 1 . Then, for the jth component
of two vectors u and v , tr(uj vj) = 0 if the Pauli operators corresponding to uj and vj commute. On
the one hand, if the Pauli operators do commute, then either one of them is the identity and uj vj = 0 ,
or uj = vj 6= 0 , in which case uj vj = uj

3 = 1 : either way, the trace will be zero. Otherwise, it is easy
to show that uj vj will be either ω or ω2 , both of which have trace one. In order for the Pauli operators
arising from u and v to commute, we require that the parity of these component-wise traces be even,
or equivalently, that the sum in GF (4) be equal to zero. Then, the formula of Equation 8 plays the
same role as the symplectic product for the 2n-bit representation of the syndrome generators.

2.3 Building the stabilizer

The stabilizer is again built from the parity check matrix of the classical code: however, this time there
is only one classical code, and it’s based on the field GF (4) . This has a significant impact on how
the stabilizer generators can be found. To illustrate how stabilizer generators could be chosen, we’ll
consider the case where we want to build a [[5, 1, 3]] quantum code (which we know does exist) from a
GF (4) code.

Recall from the last lecture that the distance of the code is equal to the size of the smallest linearly
dependent collection of columns from the stabilizer. Then, we want to come up with a parity check
matrix over GF (4) such that any two columns are linearly independent over Z2 , but where some three
column collection is linearly dependent. Because we need the resulting stabilizer to be abelian, we also
require the two rows to have a symplectic inner product of zero. For reasons that we will see below,
we actually require the two row vectors u1 and u2 to be orthogonal to each other and to themselves:
that is, to have ui · uj = 0 for i, j ∈ {1, 2} . As a result, the symplectic inner product of the two rows
will automatically be zero.

Perhaps the simplest way to try to fulfill these requirements is to start with only two rows: because
the row-space will have dimension at most 2, certainly there exists a collection of three columns which
is linearly dependent (any three columns will do in this case). We can then focus on the independance
of any pair of columns, and on the orthogonality conditions. The following two rows satisfy our
requirements:

u1 =
[

0 1 1 1 1
]

,

u2 =
[

1 0 1 ω ω2
]

.

Because n = 5 is relatively small, we can essentially do this by trial and error, although some more
systematic approaches do exist.(2) Because we’re constructing a GF (4) code, the two rows will be
linearly independent over GF (4) as well as being additively independent — this will be useful in a
moment.

The rows u1 and u2 alone form the complete parity check matrix for the classical GF (4) code, and
also form a basis for the dual code. However, the dual code contains (amoung other things) the vectors
ω u1 , ω u2 , ω2

u1 , and ω2
u2 . It’s easy to verify that scalar multiplication of vectors by ω or ω2 doesn’t

correspond to any Pauli operation: so, in order to have a one-to-one correspondance between the dual
code and stabilizer elements in the quantum code, we need to include the Pauli operations arising from

(2)For example, the above rows can be generated by considering polynomials over GF (4) with leading coefficient 1 and
degree less than 2, until we produce enough of them for the number of qubits we have in the code.

5

ω u1 , ω u2 , ω2
u1 , and ω2

u2 . So, consider the vectors

u3 = ω u1 =
[

0 ω ω ω ω
]

u4 = ω u2 =
[

ω 0 ω ω2 1
]

u5 = ω2
u1 =

[

0 ω2 ω2 ω2 ω2
]

u6 = ω2
u2 =

[

ω2 0 ω2 1 ω
]

.

Because we chose u1 and u2 to be linearly independent over GF (4) , it’s fairly easy to show that u1

through u4 are additively independent. However, because ω2 = 1 + ω , we have u5 = u1 + u3 and
u6 = u2 + u4 ; we don’t need to explicitly consider the last two vectors, as they’re already in the span
of the first four. It’s also easy to verify that ui · uj = 0 for any 1 6 i, j 6 4 , given that the first two
are orthogonal to each other and to themselves.

Having obtained these rows, we obtain the stabilizer generators

0 1 1 1 1
1 0 1 ω ω2

0 ω ω ω ω
ω 0 ω ω2 1















7−→















I X X X X
X I X Z Y
I Z Z Z Z
Z I Z Y X

Note that there are four of these: the resulting quantum code then does encode one qubit.

2.4 Distance of the quantum code

It would be nice to verify that the distance of the quantum code that we have built is the correct size:
for instance, in the example above, that fixing the distance of the classical GF (4) code to be 3 is enough
to give us a quantum code of distance at least 3. To prove this, we must consider the minimum weight
of an element of N(S) r S . In the GF (4) code, this corresponds to finding the minumum Hamming
weight of a vector v such that tr(uj · v) = 0 for each of the parity check rows uj .

Let C be the classcial GF (4) code, and consider any u ∈ C⊥ (i.e. a vector generated by the rows of
the parity check matrix). Let v be a vector which produces a Pauli operator in N(S) : then, we have
tr(u · v) = 0 . Let u · v = α + ωβ : then, we know that

0 = tr(u · v) = tr(α) + tr(βω) = β , (9)

because of our assumption on v . However, ω2
u is also an element of the dual code C⊥ , so we also

know that tr(ω2
u · v) = 0 . Then, we have

0 = tr(ω2
u · v) = tr(ω2α) + tr(β) = α . (10)

Thus, we have u · v = 0 , so that v is orthogonal to u . Then, a vector v whose corresponding Pauli
operator is an element of N(S) must be orthogonal to all of the rows of the parity check matrix for
the code.(3) That is, v must be an element of the GF (4) code itself. Because the code C has distance
d, we can deduce that the minimum weight of E ∈ N(S) is d , so the distance of the quantum code is
at least d .

(3)Because the stabilizer S is itself a subset of N(S) , we can deduce that all the vectors of the parity check matrix must
be orthogonal to every other row, and orthogonal to themselves: this is where that condition came from in producing the
parity check matrix earlier.

6

