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1 Basic Definitions & Results

Recall the definition of a universal set of gates:

Definition 1. A universal set of quantum gates is a set which generates a group of operations which
is dense in the group of unitary operations on any Hilbert space.

The denseness criterion is sufficient for practical purposes: we don’t care about exact unitary operations
(an unrealistic goal at any rate) so long as we can at least approximate any unitary operation to
arbitrary finite precision.

Theorem 1 (Rains, Solovay). The Clifford group, together with any gate not from the Clifford
group, is universal for quantum computation.

Although contained in the above theorem, the following sets of gates in particular are more easily
proven to be universal for quantum computation:

• Clifford group, along with the Toffoli gate

• Clifford group, along with the π
8

gate

• Clifford group, along with the controlled- π
4

gate

Being able to approximate operations with arbitrary precision is important, but also important is the
amount of effort to achieve the desired precision. The following Theorem provides us with a reason to
consider this model of computing realistic.

Theorem 2 (Solovay, Kitaev). For any universal set of gates S , we can approximate an arbitrary
unitary operation U over a Hilbert space H of fixed dimension (≥ 2) to precision ε > 0 , using poly(log ε)
gates from S .

2 Using teleportation for universal computation

Although it is often considered a sort of communication protocol rather than a quantum operation,
teleportation can be used as a tool for computation in conjunction with specially prepared states. In
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the context of fault-tolerant computation, this idea comes in useful.

2.1 Clifford group operations

Suppose that we want to perform a Clifford group operation U to some qubit state. Teleporting the
state between the input and the point where we perform the gate U doesn’t affect the overall operation,
so we might perform this operation with the following circuit:

|ψ〉

�
�

@
@

Bell
meas.

R U U |ψ〉

(Here, the R operation is some Pauli operation controlled classically by the result of the Bell mea-
surement.) We don’t have to perform the U operation after the teleportation: we could pull the U
operation past the Pauli operation R , and arrive at the following modified circuit:

|ψ〉

�
�

@
@

Bell
meas.

URU †U U |ψ〉

Now, as U is a Clifford gate, then URU † is in the Pauli group. Then, if we can create the input state
(I ⊗ U) |Φ+〉 , we could perform U on arbitrary quantum states via teleportation. The advantage of
this approach is that the preparation of such states (I ⊗U) |Φ+〉 could be done “offline” by building a
reserve supply for future use.

Note that the stabilizer of the state (I ⊗ U) |Φ+〉 is generated by the two operators

X ⊗ UXU †

Z ⊗ UZU † ,

and because U is a Clifford group operation, these are Pauli operations as well. Then, using Pauli
measurements, we can easily create the state (I ⊗ U) |Φ+〉 .

What we see here is that Clifford group operations can be simulated using Pauli operations and Pauli
measurements. (The Bell basis measurement in the teleportation, of course, can also be performed using
Pauli measurements.) Then, if we perform the Pauli operations and measurements fault-tolerantly,
we can perform all Clifford group operations fault-tolerantly as well. Since we can perform logical
Pauli operations and measurements for any stabilizer code, this shows that we have a fault-tolerant
construction of the Clifford group for any stabilizer code.
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2.2 Moving beyond the Clifford Group

Next, let’s consider what happens when we use a gate such as the π
8

gate instead of a Clifford operation
for U . The π

8
gate transforms the Pauli operations as follows:

UZU † = Z

UXU † = eiπ/4XP
†
π/2

UY U † = eiπ/4Y P
†
π/2

What we see here is that U now conjugates the Pauli group into the Clifford group. Then, the modified
teleportation circuit involves Clifford group operations — which we already know we can perform fault-
tolerantly. Then, the problem of performing the π

8
gate U fault-tolerantly has been reduced to creating

the state (I ⊗ U) |Φ+〉 .

Once more, we can consider this state as the +1 eigenvalue of a stabilizer generated by X ⊗ UXU †

and Z ⊗ UZU † . One circuit to do this would just be as follows:

|0〉

|0〉

(cat state)

UXU †

X

u H u
Z







+1 eigenstate of X ⊗ UXU †

The operation performed by all but the last operation is effectively an X ⊗ UXU † measurement. In
order to be able to perform this fault-tolerantly, we need to be able to perform fault-tolerant controlled
operations for Clifford group gates. So far, we only know how to perform Clifford group operations
fault-tolerantly, not controlled operations. We can, however, do the controlled operation when the
control register is a cat state: If the transversal implementation of the Clifford group gate is C⊗n, for
instance, the controlled Clifford group gate is just controlled-C from each qubit of the cat state to the
corresponding qubit of the code register. Then either C is performed on none of the qubits in the code
block (when the cat state is all |0〉) or on all of them (when the cat state is all |1〉). The controlled-Z
operation at the end is to “steer” the measured state into the +1 eigenstate of the measurement.

We can perform a similar operation in order to project this into the +1 eigenspace of Z⊗UZU † (using
a controlled-not gate to steer the state into the appropriate eigenspace). Using this circuit, then, we
can prepare (I ⊗ U) |Φ+〉 fault-tolerantly, and thereby perform the π

8
gate fault-tolerantly.

2.3 Boot-strapping

We can use the technique we’ve been describing above to boot-strap our way to universal fault-tolerant
computation, using teleportation. On a Hilbert space H , we can define an infinite sequence of gate-
families in terms of commutation relations, with the Pauli group at the base:

C1(H) = Pauli group on H

Ck+1(H) =
{

U ∈ U(H)
∣

∣

∣
UC1U

† ⊆ Ck

}

3



From this definition, the Clifford group would be equal to C2(H) , and the Toffoli and π
8

gates are in
C3(H) .

Note that these sets Ck need not be groups. In particular, the π
8

gate cannot be generated exactly by
the Clifford group and the Toffoli operation, although these are all operations in C3 . Also, note that
C3 is universal for quantum computation, and therefore generates an infinite group, while C3 itself is
finite.

If we let H be the Hilbert space of n qubits, we can prove by the teleportation construction that you
can perform operations in Ck+1(H) , provided that you can perform operations and measurements of
operations in Ck(H) . We have also seen that by performing operations in Ck(H) , Pauli measurements,
and performing operations such as the controlled-Z and controlled-not gates, we can perform mea-
surements in Ck(H) as well. Then, by induction, we can prove that Pauli operations, measurements,
and the controlled-not and controlled-Z operations are sufficient to perform universal fault-tolerant
quantum computation.

3 Composing error correction codes

Is this a winning game? Can we perform fault-tolerant computation, reducing errors so that they have
an arbitrarily small effect on our computations? The answer is yes — provided that the error rate on
the physical qubits is low enough, we can make it arbitrarily low on the encoded qubits.

Take two codes, [[n1 , 1 , k1]] and [[n2 , 1, k2]] , and concatenate them.

s
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    ```̀���qqq qq q
hhhhQ
QQ���qqq qq q

1

n1

n1n2

←− n2

←− n2

...

←− n2

If d2 erasure errors occur in each of d1 different blocks, we can cause errors in each of the sub-blocks
that the second code can’t correct. Then, these will act as d1 errors in the second level code. Depending
on the particular encoded error that occurs, the first code may actually be able to detect and correct
this error: although the first code cannot correct all errors of weight d1 , it may be able to correct
some . What is clear, though, is that if fewer than d1d2 erasure errors occur, then fewer than d1 blocks
have at least d2 erasure errors in them; then, performing the lower-level error correction, fewer than
d1 blocks will have encoded errors in them, so the higher-level error correction will fix all of the errors
that occurred. Then, the composite code will have distance at least d1d2 .

Some examples:

• Composing the 5-qubit code with itself will yield a [[25, 1, 9]] qubit code. If we use the usual
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description for the 5-qubit code,

S1 = X ⊗ Z ⊗ Z ⊗X ⊗ I

S2 = I ⊗X ⊗ Z ⊗ Z ⊗X

S3 = X ⊗ I ⊗X ⊗ Z ⊗ Z

S4 = Z ⊗X ⊗ I ⊗X ⊗ Z

X = X̃ = X ⊗X ⊗X ⊗X ⊗X

Z = Z̃ = Z ⊗ Z ⊗ Z ⊗ Z ⊗ Z

Then the stabilizer for the composite code is given by

X̃ ⊗ Z̃ ⊗ Z̃ ⊗ X̃ ⊗ I⊗5

I⊗5 ⊗ X̃ ⊗ Z̃ ⊗ Z̃ ⊗ X̃

X̃ ⊗ I⊗5 ⊗ X̃ ⊗ Z̃ ⊗ Z̃

Z̃ ⊗ X̃ ⊗ I⊗5 ⊗ X̃ ⊗ Z̃

which corrects all of the encoded errors, as well as

S1 ⊗ I
⊗5 ⊗ I⊗5 ⊗ I⊗5 ⊗ I⊗5

I⊗5 ⊗ S1 ⊗ I
⊗5 ⊗ I⊗5 ⊗ I⊗5

...

S2 ⊗ I
⊗5 ⊗ I⊗5 ⊗ I⊗5 ⊗ I⊗5

I⊗5 ⊗ S2 ⊗ I
⊗5 ⊗ I⊗5 ⊗ I⊗5

...

&c

which corrects errors in individual blocks of the code. The encoded operations for this code will
clearly be X = X̃⊗5 and Z = X̃⊗5 .

• Composing the 7-qubit code with itself k times will yield a [[7k, 1, 3k ]] code.
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