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Basic problem : Let S be a superoperator representing the error(s) that

can occur during the manipulation (or transmission) of a qubit.

ρ −→ S[ρ] ?−→ ρ

Solution : Quantum Error Correction. This is the science of encoding the

information such that after the error has taken place, it is possible to recover

the original information. In short, it means that there exists encoding and

decoding functions E and D such that

ρ
E−→ E(ρ) −→ S[E(ρ)] D−→ ρ

A classical example of an error-correcting code is the repetition code, i.e.

0 −→ 000 1 −→ 111

such that whenever one of the three bits flips, we can still guess the original

message by the rule of the majority, i.e.

1 −→ 111
flip−→ 110 −→ 1 (1)

In quantum mechanics, it is, however, impossible to use that technique, i.e.

|ψ〉 6−→ |ψ〉|ψ〉|ψ〉
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for |ψ〉 = α|0〉+β|1〉 due to the no-cloning theorem which forbids the copying

of an arbitrary state without disturbing the original one.

More generally, the problems we have to face with quantum mechanics are

the following :

- No-cloning theorem

- Measurements which destroy the superposition

- Continuous errors on the state

- Phase errors

One way to implement error correction for a quantum state could be inspired

by the classical repetition code :

α|0〉+ β|1〉 −→ α|0〉|0〉|0〉+ β|1〉|1〉|1〉

In the same fashion as in the classical case, we could

Step 1- Measure all 3 qubits

Step 2- See which one differs from the others

Step 3- Flip the wrong qubit back

But the measurement in the first step would destroy the superposition, re-

sulting in a quantum computation that is no more efficient than its classical

counterpart. Thus, we basically want to eliminate step 1. How ?

Bit flip error

This actually corresponds, in the computational basis, to an error created

by an X gate.

a) Qubit 1 and 2 are supposed to be the same - Are they?

b) Qubit 2 and 3 are supposed to be the same - Are they?
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The answer to those two questions fully determines the problem (e.g., if the

answer to a) is No and to b) is Yes, then we know for sure that qubit 1

differs from the two others). By the way, the set of answers ({No, Yes} in

this case) is called the Error Syndrome.

A way to find the answer to these two questions without disturbing (i.e.

reading) the state could be to use two ancillas and performing operations on

these controlled by qubits 1 and 2 for the first ancilla, and 2 and 3 for the

second. The operations must of course be such that it gives the answer to

the above question and thus the two ancillas are actually the error syndrome.

Consider the following diagram:

It is easy to verify that ancilla 1 (2) will have value 0 iff qubit 1 and 2 (2

and 3) are the same. If the differ, the value will be 1. From there, it is

possible to apply bit flip operations on the three qubits controlled by the

two ancillas such that the initial state is recovered.

Discrete phase flip error This corresponds, in the computational basis,

to an error created by the Z gate, i.e.

|0〉 −→ |0〉, |1〉 −→ −|1〉

Something to notice is that

Z|+〉 = |−〉, Z|−〉 = |+〉

where |+〉 = |0〉 + |1〉 (forgetting the normalization) and |−〉 = |0〉 − |1〉.
Thus, it is clear we can use the same circuit as above, except that the
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encoding would be

|0〉 −→ |+ ++〉, |1〉 −→ | − −−〉

and the circuit looks like

Now, what happens if we want to correct both flip and phase errors? We can

use the 9-qubit code which is a combination of both of the above encodings,

i.e.

|0〉 −→ |0̄〉 = (|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)

|1〉 −→ |1̄〉 = (|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉)

It is easy to check that this encoding is able to correct an error on a

single qubit of the form X, Z and Y (=iXZ), or more clearly, flip and phase

error and both at the same time on the same qubit. This is a quantum

error-correcting code (QECC).

Continuous phase error This type of error can be represented by

Rθ =

(
1 0

0 eiθ

)

= eiθ
(

cos
θ

2
1l− sin

θ

2
Z

)
(2)

Thus, we have

α|0̄〉+ β|1̄〉
R

(j)
θ−→ R

(j)
θ (α|0̄〉+ β|1̄〉)

= cos
θ

2
1l(j)(α|0̄〉+ β|1̄〉)− sin

θ

2
Z(j)(α|0̄〉+ β|1̄〉)

EC−→ cos
θ

2
1l(j)(α|0̄〉+ β|1̄〉)|1l〉 − sin

θ

2
Z(j)(α|0̄〉+ β|1̄〉)|Z〉
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where |1l〉 and |Z〉 represent the error syndromes for the “identity” error or

the phase error on qubit j. Thus, by doing a measurement on the error

syndrome, we are left with the state

(α|0̄〉+ β|1̄〉)|1l〉 with Prob. = | cos θ
2 |

2

Z(j)(α|0̄〉+ β|1̄〉)|Z〉 with Prob. = | sin θ
2 |

2

In short, it says that at the end, using the 9-qubit QECC, we either have the

original state or the original state with a phase flip !!!! This development

actually leads to a more general theorem :

Theorem 1. Suppose we have a QECC |ψ〉 −→ |ψ̄〉 which corrects errors

E and F. Then this QECC also corrects αE + βF, ∀α, β

Proof. (Sketch) If the QECC corrects E and F, it thus means that

E|ψ̄〉 EC−→ |ψ̄〉|E〉

F |ψ̄〉 EC−→ |ψ̄〉|F 〉

where |E〉 and |F 〉 are the error syndromes for errors E and F respectively.

Therefore, we have

(αE + βF )|ψ̄〉 EC−→ αE|ψ̄〉|E〉+ βF |ψ̄〉|F 〉

−→ |ψ̄〉(α|E〉+ β|F 〉), (3)

and thus we can recover the original state by measuring the error syndrome.

From this, we can thus conclude that the 9-qubit code can correct any

unitary operation on a single qubit, not just the discrete errors X, Y , and

Z.
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