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1 Basic Definitions

Definition 1. A group G is a set with a multiplication rule satisfying the following axioms:

• Closure: g, h ∈ G =⇒ gh ∈ G.

• Associativity: g, h, k ∈ G =⇒ (gh)k = g(hk).

• Identity: ∃e ∈ G such that ∀g ∈ G, eg = ge = g. e is called the identity element of the group.

• Inverse: ∀g ∈ G, ∃g−1 ∈ G such that gg−1 = g−1g = e. g−1 is the inverse of g.

An Abelian group satisfies the following additional axiom:

• Commutativity: ∀g, h ∈ G, gh = hg.

A group that is not Abelian is called a non-Abelian group.

For Abelian groups, multiplication is sometimes written as addition, i.e., we write g + h instead of gh,
the identity is written as 0, and the inverse of g is written as −g. For groups using multiplicative notation,
the identity is sometimes written as 1.

Examples of infinite Abelian groups include the integers or the real numbers (using addition as the group
“multiplication”), or the real numbers without 0 using multiplication as the group multiplication.

Exercise 1. The integers (even without 0) are not a group using multiplication. Why not? Why do we need
to exclude 0 for the real numbers to be a group under multiplication?

Some useful finite Abelian groups are the integers Zn modulo n under addition (that is, take the numbers
0, . . . , n− 1 as the set, and group addition is defined by regular integer addition, taking only the remainder
when the sum is divided by n). When n = p is prime, the integers (without 0) modulo p also form a group
under multiplication, written Z∗

n.
Examples of finite non-Abelian groups are the permutation groups Sn consisting of permutations of n

(distinguishable) objects.

Exercise 2. Show that Sn is a group.

We can also combine groups with a direct product structure by taking multiple copies of a group. The
direct product G×H is the set consisting of pairs (g, h) with the multiplication rule (g, h)·(g′, h′) = (gg′, hh′).

Definition 2. The order |G| of a finite group G is the number of elements in the underlying set.

The order of Zn is n. The order of Sn is n!.

Definition 3. A field F is a set with two operations, addition and multiplication, with the following proper-
ties:

• The field forms an Abelian group under addition.

• The field without the additive inverse 0 forms an Abelian group under multiplication.

1



• Distributivity: x, y, z ∈ F =⇒ x(y + z) = xy + xz.

Examples of infinite fields are the real numbers, the rational numbers, and the complex numbers. Exam-
ples of finite fields are Zp, the integers modulo a prime p.

An abstract vector space is an abelian group (written additively) with a scalar multiplication by elements
of a field. A 1-dimensional vector space over the field F is just equal to F. The additive group for an n-
dimensional vector space is the direct product of n copies of F.

Definition 4. The direct product G×H of two groups G and H is formed from the set G×H of ordered
pairs (g, h) (g ∈ G, h ∈ H) with multiplication rule (g, h) · (g′, h′) = (gg′, hh′).

Exercise 3. Show that G×H is a group. What is the identity? What is the inverse of (g, h)?

2 Subgroups

Definition 5. A subgroup H of a group G is a subset of G which itself forms a group under the multiplication
operation for G. That is, H is closed under multiplication and inverse, and contains the identity for G. The
notation H ≤ G means that H is a subgroup of G.

Any subgroup of the integers consists of multiples of some number. Thus, all even numbers form one
subgroup of Z, and all numbers divisible by 25 form another subgroup. An example of a subgroup of Sn is
the set of cyclic permutations (starting from some particular ordering of the objects being permuted).

Theorem 1 (Lagrange’s theorem). Suppose H ≤ G, with G and H finite groups. The order of G is a
multiple of the order of H.

Definition 6. The left coset gH of the subgroup H ≤ G (with g ∈ G) is the set {gh|h ∈ H}. The right
coset Hg of H is the set {hg|h ∈ H}. In these cases g is called a coset representative for the left and right
cosets gH and Hg.

For groups written additively, we instead write g + H for a coset. Note that the coset eH = H and that
gH = g′H iff g−1g′ ∈ H. Thus, the cosets of a subgroup partition the group G. Also note that each coset
has the same number of elements as H; this proves Lagrange’s theorem.

Note that only the coset of the identity is a subgroup of G.

Definition 7. Suppose H ≤ G. H is a normal subgroup of G (written H C G) iff left cosets of H are equal
to the corresponding right cosets of H. That is, ∀g ∈ G, gH = Hg.

For an Abelian group, all subgroups are normal. For a non-Abelian group, normal subgroups tell us a
great deal about the structure of the group and play a critical role in group theory. Some groups have no
nontrivial normal subgroups. (The identity element forms a subgroup, which is always normal; the full group
is also always a normal subgroup of itself.)

Definition 8. The center Z(G) of the group G is the set of elements that commute with everything in the
group: Z(G) = {h|gh = hg ∀g ∈ G}.
Exercise 4. Prove that Z(G) C G.

Definition 9. Let S ⊆ G be a set of group elements. Then the subgroup generated by S, sometimes denoted
〈S〉, is the smallest subgroup containing S. That is, 〈S〉 consists of all (finite) products (in any order, when
G is non-Abelian) of elements of S and their inverses. S is called a generating set for the subgroup 〈S〉. A
group is cyclic if it has a single-element generating set.

Thus, in the integers, 〈2〉, the subgroup generated by just the element 2, consists of all even numbers,
whereas 1 generates the full group of integers. The integers and all the groups Zn are cyclic, since they each
can be generated by the element 1.

Exercise 5. Show that 〈6, 15〉, the subgroup of Z generated by 6 and 15, is equal to Z3, which consists of all
numbers divisible by 3.

Frequently we are interested in minimal generating sets for a group or subgroup — that is, sets for which
removing even one element would mean generating a smaller group.
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3 Homomorphisms

Definition 10. Let G and H be groups. A function f : G → H is a homomorphism iff ∀g, g′ ∈ G, f(gg′) =
f(g)f(g′).

That is, a homomorphism is a function that preserves the group multiplication. Note that for a homo-
morphism f , f(e) = e and f(g−1) = [f(g)]−1.

For example, the homomorphisms from Z to Z are linear functions k 7→ ck (for integer c, k). We can
also have homomorphisms Z to Zn. For instance, the map “take the remainder of k modulo n” is such a
homomorphism.

Definition 11. A homomorphism f : G → H which has an inverse homomorphism f−1 (that is, f−1 :
H → G such that f(f−1(h)) = h ∀h ∈ H and f−1(f(g)) = g ∀g ∈ G) is called an isomorphism. If there
is an isomorphism from G to H, G and H are isomorphic. An isomorphism from G to itself is called an
automorphism.

Clearly isomorphic finite groups have the same order, so for instance, Zn and Zm are not isomorphic
unless m = n, in which case there is an obvious isomorphism. However, there are also finite groups which
have the same order but are not isomorphic. For instance, the direct product group Z2 × Z2 (which has
order 4) is not isomorphic to the cyclic group Z4 (which also has order 4).

Definition 12. For any element h ∈ G, consider the map fh : G → G defined by fh(g) = hgh−1. This is
known as conjugation by h. The map fh is called an inner automorphism.

Thus, an equivalent definition of a normal subgroup is a subgroup H for which fg(H) = H for all g ∈ G.
The inner automorphisms are good examples of nontrivial automorphisms of a group (at least, they are
generally non-trivial for a non-Abelian group).

Exercise 6. Prove that fh is an automorphism from G to G. Show that the automorphism equals the identity
iff h ∈ Z(G).

Definition 13. Let f : G → H be a homomorphism. The kernel K(f) of f is the set {g ∈ G | f(g) = e}.

Theorem 2. The kernel K(f) of any homomorphism is a normal subgroup of G.

Exercise 7. Prove this.

A more difficult and deep theorem is the converse:

Theorem 3. Let N C G. Then there exists group H and homomorphism f : G → H such that N = K(f).

To show this, we develop the notion of a quotient group:

Definition 14. Let N C G. Then the quotient group G/N is the set of cosets of N with multiplication
defined by (gN)(g′N) = (gg′)N .

Theorem 4. G/N is a group. If G is Abelian, then so is G/N .

Proof. It’s not even immediately obvious that this multiplication rule is well-defined, but it is, because N is
a normal subgroup: suppose we pick different coset representatives h ∈ gN and h′ ∈ g′N (so gN = hN and
g′N = h′N). Then we need to show that (gg′)N = (hh′)N ; that is, that

(gg′)−1(hh′) = g′−1(g−1h)h′ ∈ N. (1)

We know that n = g−1h ∈ N . But since N is normal, g′−1N = Ng′−1. That means ∃n′ ∈ N such that
g′−1n = n′g′−1. (Note that n′ may not be equal to n, however.) Thus,

g′−1(g−1h)h′ = (g′−1n)h′ = n′(g′−1h′). (2)

This is in N since n′ ∈ N and g′−1h′ ∈ N , and since N is a subgroup, and is therefore closed under
multiplication.
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From here it is easy to verify the group axioms. Closure and associativity are pretty much trivial. The
identity element of G/N is the coset of the identity eN . The inverse of a coset gN is the coset g−1N . If G
is Abelian, then

(gN)(g′N) = (gg′)N = (g′g)N = (g′N)(gN). (3)

This enables us to prove theorem 3. When N is a normal subgroup, there is a fairly obvious homomor-
phism from G to H = G/N , namely, g 7→ gN .

Exercise 8. Show that g 7→ gN defines a homomorphism and show that N is the kernel of this map.

Other interesting constructions are the normalizer and centralizer of a subgroup.

Definition 15. The normalizer NG(H) of a subgroup H ≤ G is the largest subgroup of G for which H is a
normal subgroup, H C NG(H). The centralizer ZG(H) of H in G is the largest subgroup of G for which all
elements of H commute with all elements of ZG(H).

Thus, for instance, if G is Abelian, NG(H) = ZG(H) = G.

Exercise 9. Show that NG(H) = {g | g−1hg ∈ H ∀h ∈ H} and ZG(H) = {g | g−1hg = h∀h ∈ H}. When is
H ≤ NG(H)? When is H ≤ ZG(H)?
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