This series consists of talks in the area of Condensed Matter.
Remarkable recent experiments have observed Mott insulating behavior and superconductivity in moire superlattices of twisted bilayer graphene near a magic twist angle. However, the nature of the Mott insulator, origin of superconductivity and an effective model remain to be determined. I will present our understanding of these phenomena. We propose a Mott insulator with intervalley coherence that spontaneously breaks U(1) valley symmetry, and describe a mechanism that selects this order over the competing magnetically ordered states favored by the Hunds coupling.
Recently, a web of quantum field theory dualities was proposed linking several problems in the study of strongly correlated quantum critical points and phases in two spatial dimensions. These dualities follow from a relativistic flux attachment duality, which relates a Wilson-Fisher boson with a unit of attached flux to a free Dirac fermion. While several derivations of members of the web of dualities have been presented thus far, none explicitly involve the physics of flux attachment, which in relativistic systems affects both statistics and spin.
Recent quench experiments in a quantum simulator of interacting Rydberg atoms demonstrated surprising long-lived, periodic revivals from certain low entanglement states, while apparently quick thermalization from others. Motivated by these findings, I will in this talk analyze the dynamics of a family of kinetically constrained spin models related to the experiments. By introducing a manifold of locally entangled spins, representable by a low-bond dimension matrix product state (MPS), I will derive "semiclassical" equations of motion for them.
We demonstrate that extremely long range correlations may develop in systems that start from equilibrium and are then rapidly cooled (or driven in other ways). Amongst other things, these correlations suggest a collapse of the viscosity data of glass formers. This collapse is found to be obeyed over 16 decades of relaxation times in experimental data on all known types of supercooled fluids.
Over the last decade, there have been enormous gains in machine learning technology primarily driven by neural networks. A major reason neural networks have outperformed older techniques is that the cost of optimizing them scales well with the size of the training dataset. But neural networks have the drawback that they are not very well understood theoretically.
The strong interaction of quarks and gluons is described theoretically within the framework of Quantum Chromodynamics (QCD). The most promising way to evaluate QCD for all energy ranges is to formulate the theory on a 4 dimensional Euclidean space-time grid, which allows for numerical simulations on state of the art supercomputers. We will review the status of lattice QCD calculations providing examples such as the hadron spectrum and the inner structure of nucleons. We will then point to problems that cannot be solved by conventional Monte Carlo simulation techniques, i.e.
The modern conception of phases of matter has undergone tremendous developments since the first observation of topologically ordered states in fractional quantum Hall systems in the 1980s. In this paper, we explore the question: In principle, how much detail of the physics of topological orders can be observed using state of the art technologies?
We examine 1D spin-chains evolving under random local unitary circuits and prove a number of exact results on the behavior of out-of-time-ordered commutators (OTOCs), and entanglement growth. These results follow from the observation that the spreading of operators in random circuits is described by a ``hydrodynamical'' equation of motion. In this hydrodynamic picture quantum information travels in a front with a `butterfly velocity' $v_{\text{B}}$ that is smaller than the light cone velocity of the system, while the front itself broadens diffusively in time.
Low-energy states of quantum spin liquids are thought to involve partons living in a gauge-field background. We study the spectrum of Majorana fermions of the Kitaev honeycomb model on spherical clusters. The gauge field endows the partons with half-integer orbital angular momenta. As a consequence, the multiplicities do not reflect the point-group symmetries of the cluster, but rather its projective symmetries, operations combining physical and gauge transformations. The projective symmetry group of the ground state is the double cover of the point group.
Topological phases of matter entail a prominent research theme, featuring
distinct characteristics that include protected metallic edge states and
the possibility of fractionalized excitations. With the advent of symmetry
protected topological (SPT) phases, many of these phenomena have
effectively become accessible in the form of readily available band
structures. Whereas the role of (anti-)unitary symmetries in such SPT
states has been thoroughly understood, the inclusion of lattice symmetries
provides for an active area of research.