Video Library

Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres.  Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.  Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA)PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org. 

  

 

 

Monday Dec 11, 2017

Atiyah and Segal's axiomatic approach to topological and conformal quantum field theories provided a beautiful link between the geometry of "spacetimes" (cobordisms) and algebraic structures. Combining this with the physical notion of "locality" led to the introduction of the language of higher categories into the topic.
Natural targets for extended topological field theories are higher Morita categories: generalizations of the bicategory of algebras, bimodules, and homomorphisms.

Collection/Series: 
Scientific Areas: 

 

Thursday Dec 07, 2017

In this talk, I will discuss how to assign geometries, such as metric tensors, to certain tensor networks using quantum entanglement and tensor Radon transform. In addition, we show that behaviour similar to linearized gravity can naturally emerge in said tensor networks, provided a modified version of Jacobson's entanglement equilibrium is satisfied. Since the aforementioned properties can be reached without relying on AdS/CFT, the approach also shows promise towards constructing tensor network models for cosmological spacetimes. 

Collection/Series: 
Scientific Areas: 

 

Thursday Dec 07, 2017

TBA In the framework set by the AdS/MERA conjecture, we investigate a generalisation of the Tensor Network description of bulk geometry in the language of Group Field Theories, a promising convergence of insights and results from Matrix Models, Loop Quantum Gravity and simplicial approaches. We establish a first dictionary between Group Field Theory and Tensor Network states. With such a dictionary at hand, we target the calculation of the Ryu-Takayanagi formula recently derived for Random Tensor Networks in the quantum gravity formalism.

Collection/Series: 
Scientific Areas: 

 

Thursday Dec 07, 2017

A great deal of progress has been made toward a classification of bosonic topological orders whose microscopic constituents are bosons. Much less is known about the classification of their fermionic counterparts. In this talk I will describe a systematic way of producing fermionic topological orders using the technique of fermion condensation.

Collection/Series: 
Scientific Areas: 

 

Wednesday Dec 06, 2017
Speaker(s): 

In this talk I will discuss issues and possibilities to outline Quantum Gravity Phenomenology using cosmological and astrophysical data. After a brief review on some formal aspect of the problem I will focus on the analysis of in-vacuo dispersion features for GRB (gamma-ray-burst) neutrinos of energy in the range of 100 TeV, and for GRB photons with energy in the range of 10 GeV. I will introduce a strategy of data analysis which has the advantage of being applicable to several alternative possibilities for the laws of propagation of neutrinos and other particles in a quantum spacetime.

Collection/Series: 
Scientific Areas: 

 

Tuesday Dec 05, 2017

Periodically driven (Floquet) systems can display entirely new many-body phases of matter that have no analog in stationary systems. One such phase is the Floquet time crystal, which spontaneously breaks a discrete time-translation symmetry. In this talk, I will survey the physics of these new phases of matter. I explain how they can be stabilized either through strong quenched disorder (many-body localization), or alternatively in clean systems in a "prethermal" regime which persists until a time that is exponentially long in a small parameter.

Collection/Series: 
Scientific Areas: 

 

Tuesday Dec 05, 2017
Speaker(s): 

We will discuss recent trapping and cooling experiments with optically levitated nanoparticles [1]. We will report on the cooling of all translational motional degrees of freedom of a single trapped silica particle to 1mK simultaneously at vacuum of 10-5 mbar using a parabolic mirror. We will further report on the squeezing of a thermal motional state of the trapped particle by rapid switching of the trap frequency [2].

Collection/Series: 
Scientific Areas: 

 

Tuesday Dec 05, 2017

I will discuss a class of models in which thermal dark matter is lighter than an MeV. If dark matter thermalizes with the Standard Model below the temperature of neutrino-photon decoupling, constraints from measurements of the effective number of neutrino species are alleviated. This framework motivates new experiments in the direct search for sub-MeV thermal dark matter and light force carriers.

Collection/Series: 
Scientific Areas: 

 

Monday Dec 04, 2017
Speaker(s): 

In this talk first I will introduce and motivate the problem of finding finite energy Yang-Mills instantons on curved backgrounds.  

Collection/Series: 
Scientific Areas: 

Pages

Next Public Lecture

Check back for details on the next lecture in Perimeter's Public Lectures Series