A A   
Connect with us:      
 

Moore-Tachikawa conjecture, affine Grassmannian and Coulomb branches of star-shaped quivers



Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.


Recording Details

Speaker(s): 
Scientific Areas: 
Collection/Series: 
PIRSA Number: 
17100069

Abstract

Moore and Tachikawa conjecture that there exists a functor from the category of 2-bordisms to a certain category whose objects are algebraic groups and morphisms between $G$ and $H$ are given by affine symplectic varieties with an action of $G\times H$.  I will explain a proof of this conjecture due to Ginsburg and Kazhdan, and its relation to Coulomb branches of certain quiver gauge theories which allows to make interesting calculations.