Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.
 

Weak approximate unitary designs and applications to quantum encryption



Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.


Recording Details

Speaker(s): 
Scientific Areas: 
PIRSA Number: 
20100049

Abstract

Unitary t-designs are the bread and butter of quantum information theory and beyond. An important issue in practice is that of efficiently constructing good approximations of such unitary t-designs. Building on results by Aubrun (Comm. Math. Phys. 2009), we prove that sampling dtpoly(t,logd,1/ϵ) unitaries from an exact t-design provides with positive probability an ϵ-approximate t-design, if the error is measured in one-to-one norm. As an application, we give a randomized construction of a quantum encryption scheme that has roughly the same key size and security as the quantum one-time pad, but possesses the additional property of being non-malleable against adversaries without quantum side information. Joint work with Cécilia Lancien.