Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.
 

Tsirelson's problem and linear system games



Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.


Recording Details

Speaker(s): 
Scientific Areas: 
Collection/Series: 
PIRSA Number: 
16100034

Abstract

In quantum information, we frequently consider (for instance, whenever we talk about entanglement) a composite system consisting of two separated subsystems. A standard axiom of quantum mechanics states that a composite system can be modeled as the tensor product of the two subsystems. However, there is another less restrictive way to model a composite system, which is used in quantum field theory: we can require only that the algebras of observables for each subsystem commute within some larger subalgebra. For finite-dimensional systems, these two axioms are equivalent, but this is not necessarily true for infinite-dimensional systems. Tsirelson's question (which comes in several variants) asks whether the correlations arising from commuting-operator models can always be represented by tensor-product models. I will give examples of linear system non-local games which cannot be played perfectly with tensor-product strategies, but can be played perfectly with commuting-operator strategies, resolving (one version of) Tsirelson's question in the negative. From these examples, we can also derive other consequences for the theory of non-local games, such as the undecidability of determining whether a non-local game has a perfect quantum strategy.