Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.
 

Solving physics many-body problems with deep learning



Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.


Recording Details

Speaker(s): 
Scientific Areas: 
Collection/Series: 
PIRSA Number: 
19110081

Abstract

Solving classical and quantum physics many-body systems are amongst the hardest problems in the natural sciences, but also of fundamental importance for applications such as material and drug design. In this talk, I will give a an overview of fundamental physics problems at multiple time- and lengthscales and describe deep learning methods to address them: 1) solving the quantum-chemical electronic Schrödinger equation with deep variational Monte Carlo, 2) learning to coarse-grain many-body systems, and 3) sampling equilibrium states of classical many-body systems with generative learning.