Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.
 

Renormalisation and momentum dependence in Quantum Gravity



Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.


Recording Details

Speaker(s): 
Scientific Areas: 
Collection/Series: 
PIRSA Number: 
20100012

Abstract

Renormalisation in curved spacetimes is an involved subject. In contrast to renormalisation in a flat spacetime, the standard momentum representation is not directly available. Nevertheless, the momentum dependence of correlation functions is crucial to deciding whether a theory is unitary and causal. I will discuss how to define a notion of momentum dependence in gravity on a fundamental level. With this at hand, one can discuss an important quantum field theory observable: scattering cross sections. Taking the example of gravity-mediated scalar scattering, I will discuss conditions that a quantum field theory of gravity has to fulfil to have a well-behaved scattering amplitude. These can be satisfied without the introduction of massive higher spin modes as is done in string theory. Finally, I will review the status of first principle calculations of the non-perturbative momentum dependence of quantum gravity correlation functions.