Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.

Recently discovered, stronger forms of quantum noncality

Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.

Recording Details

Scientific Areas: 
PIRSA Number: 


In this talk I will discuss recently-identified classes of quantum correlations that go beyond nonlocal classical hidden-variable models equipped with communication. First, in the bipartite scenario, I will focus on so-called instrumental causal networks, which are a primal tool in causal inference. There, I will show that it is possible to “fake” classical causal influences with quantum common causes, in a formal sense quantified by the average causal effect (ACE). Furthermore, I will show that it is possible to violate instrumental inequalities with quantum resources, both in the device-independent and in the 1-sided device-independent settings. Second, in the multipartite setting, I will present a causal hierarchy of multipartite nonlocality. I will make special emphasis on quantum correlations in the upper classes of the hierarchy that define stronger forms of genuinely multipartite quantum non-locality than those previously known. The seminar will touch upon concepts like Bell nonlocality and quantum steering as well as Bayesian nets and causal inference.