- Accueil »
- Reaching Experimentally Quantum Criticality: A Playground to Explore Novel Correlated Quantum States of Matter

Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.

Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.

Speaker(s):

Scientific Areas:

Collection/Series:

Subjects:

PIRSA Number:

13040133

Realizing experimentally continuous phase transitions in the electronic ground state of materials near zero temperature as a function of tuning some external parameter (magnetic field, pressure etc.) offers a unique opportunity to probe the extreme regime (near the transition point) where strong quantum correlations encompass the macroscopic sample as a whole, so called “quantum criticality” [1]. In this regime of strong correlations small perturbations/interactions can stabilize novel forms order or collective fluctuations that otherwise do not exist. One of the theoretically most studied paradigms for quantum criticality is a chain of Ising spins driven by a transverse field to a critical point separating spontaneous magnetic order and paramagnetic phases. We have realized this system experimentally by applying strong magnetic fields to the quasi-one-dimensional Ising ferromagnet CoNb2O6 and have probed via single-crystal inelastic neutron scattering the evolution of the magnetic order and spin excitation spectrum as a function of applied field at mili-Kelvin temperatures [2]. Near the critical point the spin excitations were theoretically predicted nearly two decades ago to have a set of quantum resonances (collective modes of vibration of the interacting spins) with universal ratios between their frequencies reflecting an exceptional mathematical structure of the quantum many-body eigenstates with a “hidden” E8 symmetry governing the physics in the scaling limit. Experiments indeed observed evidence for a spectrum of resonances and the ratio between the frequencies of the two lowest modes approached the "golden ratio" near the critical point, as predicted by field theory. As a second example of novel physics near quantum criticality I will discuss how an amplitude-modulated incommensurate spin-density wave (SDW) order appears near the field-induced critical point in the quasi-1D spin-1/2 XY antiferromagnet Cs2CoCl4. Incommensurate SDWs are very uncommon in magnetic insulators and are not stable zero-temperature ground states at the classical mean-field level, we propose that here such a state is stabilized by the strong quantum fluctuations associated with the proximity to the critical point and the weak frustrated inter-chain couplings.

©2012 Institut Périmètre de Physique Théorique