- Accueil »
- Quantum Metropolis Sampling: An algorithm to simulate thermal systems with a quantum computer

Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.

Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.

Speaker(s):

Scientific Areas:

Collection/Series:

PIRSA Number:

10030113

The original motivation to build a quantum computer came from Feynman who envisaged a machine capable of simulating generic quantum mechanical systems, a task that is intractable for classical computers. Such a machine would have tremendous applications in all physical sciences, including condensed matter physics, chemistry, and high energy physics. Part of Feynman's challenge was met by Lloyd who showed how to approximately decompose the time-evolution operator of interacting quantum particles into a short sequence of elementary gates, suitable for operation on a quantum computer. However, this left open the more fundamental problem of how to simulate the equilibrium and static properties of quantum systems. This requires the preparation of ground and Gibb's states on a quantum computer. For classical systems, this problem is solved by the ubiquitous Metropolis algorithm, a method that basically acquired a monopoly for the simulation of interacting particles. In this talk, I will demonstrate that the corresponding quantum problem can be solved by a quantum Metropolis algorithm. This validates the quantum computer as a universal simulator, and proves that the so-called sign problem occurring in quantum Monte Carlo methods can be resolved with a quantum computer.

Share This PageShare this on TwitterShare on FacebookPublish this post to LinkedInSubmit this post on reddit.com

©2012 Institut Périmètre de Physique Théorique